Objective Concentration of extracellular calcium ([Ca2+]o) in the central nervous system decreases substantially in different conditions. It results in facilitating neuronal excitability. The goal of this study is ...Objective Concentration of extracellular calcium ([Ca2+]o) in the central nervous system decreases substantially in different conditions. It results in facilitating neuronal excitability. The goal of this study is to examine the mechanisms of enhanced neuronal excitation in low [Ca2+]o in order to provide new clues to treat the hyperexcitability diseases in clinic. Methods Whole-cell patch-clamp technique and neuron culture were used in the study. Results The firing threshold of cultured hippocampal neurons decreased markedly in low [Ca2+]o saline. Unexpectedly, apamine and isoprenaline, antagonists of medium afterhyperpolarization (mAHP) and slow AHP (sAHP) respectively, had no statistic significant effect on excitability of neurons. TTX at a low concentration was sufficient to inhibit/Nap, which blocked the increase of firing frequency in low [Ca2+]o. It also reduced the number of spikes in normal [Ca2+]o. Conclusion These results suggest that in cultured hippocampal neurons, modulation of spiking threshold but not AHP may cause the increased excitability in low [Ca2+]o.展开更多
Objective To observe the effects of y-aminobutyric acid (GABA) on the electric activities of pain-excited neurons (PEN) in nucleus accumbens (NAc) in central nervous system (CNS) of morphine-dependent rats. Me...Objective To observe the effects of y-aminobutyric acid (GABA) on the electric activities of pain-excited neurons (PEN) in nucleus accumbens (NAc) in central nervous system (CNS) of morphine-dependent rats. Methods After GABA or the GABAA-receptor antagonist, bicuculline (Bic), was injected into cerebral ventricles or NAc, right sciatic nerve was stimulated by electrical pulses, which was considered as traumatic pain stimulation. Extracellular recordings methods were used to record the electric activities of PEN in NAc. Results When GABA was injected into intracerebroventricle (ICV) as well as NAc, it could decrease the pain-evoked discharge frequency and prolong the latency of PEN. Bic could interdict the above effects of GABA on the electric activities of PEN. Conclusion Exogenous GABA might have an inhibitory effect on the central pain adjustment. Furthermore, GABA and GABAA receptor participate and mediate the traumatic information transmission process in CNS.展开更多
The ability of tetrandrine (Tet), an alkaloid isolated from Radix Stephaniae Tetrandrae, to reduce cortical neuronal injury in cortical cultures derived from fetal rats was quantitatively assessed by examination of mo...The ability of tetrandrine (Tet), an alkaloid isolated from Radix Stephaniae Tetrandrae, to reduce cortical neuronal injury in cortical cultures derived from fetal rats was quantitatively assessed by examination of morphological changes and measurement of lactate dehydrogenase (LDH) released to the extracellular bathing media Cell cultures exposed to the excitatory amino acids (EAA) 50 μmol L 1 glutamate (Glu), 20 μmol L 1 N methyl D aspartate (NMDA), 300 μmol·L 1 β N oxalylamino L alanine (BMAA, NMDA receptor agonist) or 20 μmol·L 1 β N oxaly lamino L alanine (BOAA, non NMDA receptor agonist) for 24 h at 37℃ showed widespread neuronal injury Tet had little effect on the injury induced by 20 μmol·L 1 NMDA but 10 7 and 10 6 μmol·L 1 Tet did partially attenuate the neuronal degeneration, neuronal loss and LDH efflux resulting from prolonged exposures to 100 μmol·L 1 Glu, 300 μmol·L 1 BMAA and 20 μmol·L 1 BOAA respectively The ability of Tet to reduce the neuronal injury induced by prolonged exposure to EAA may contribute, at least in part, to the reduction of Ca 2+ influx through inhibiting the opening of voltagegated Ca 2+ channels Another mechanism that Tet might have a little inhibitory effect on NMDA receptor on neuronal membrane cannot be excluded, as BMAA has been considered to act as a weak NMDA receptor agonist展开更多
Bistable behavior of neuronal complex networks is investigated in the limited-sustained-activity regime when the network is composed of excitatory and inhibitory neurons.The standard stability analysis is performed on...Bistable behavior of neuronal complex networks is investigated in the limited-sustained-activity regime when the network is composed of excitatory and inhibitory neurons.The standard stability analysis is performed on the two metastable states separately.Both theoretical analysis and numerical simulations show consistently that the difference between time scales of excitatory and inhibitory populations can influence the dynamical behaviors of the neuronal networks dramatically,leading to the transition from bistable behaviors with memory effects to the collapse of bistable behaviors.These results may suggest one possible neuronal information processing by only tuning time scales.展开更多
Objective: To directly examine the effects ofcarnosine on neuronal excitation and inhibition in rat hippocampus in vivo. Methods: Artificial cerebrospinal fluid with carnosine was directly administrated over the exp...Objective: To directly examine the effects ofcarnosine on neuronal excitation and inhibition in rat hippocampus in vivo. Methods: Artificial cerebrospinal fluid with carnosine was directly administrated over the exposed rat hippocampus. The changes of neuron activity in the CA1 region of hippocampus were evaluated by orthodromically- and antidromically-evoked potentials, as well as paired-pulse stimulation paradigm. Results: In both orthodromic and antidromic response potentials, carnosine transformed population spikes (PSs) with single spike into epileptiform multiple spikes. In addition, similar to the effect of 7-aminobutyric acidA (GABAA) antagonist picrotoxin, camosine decreased paired-pulse stimulating depression significantly. However, no significant change was observed in the spontaneous field potentials during the application of carnosine. Conclusion: The results indicate a disinhibition-induced excitation effect of carnosine on the CA1 pyramidal neurons. It provides important information against the application of carnosine as a potential anticonvulsant in clinical treatment.展开更多
Spiral waves have been observed in the biological experiments on rat cortex perfused with drugs which can block inhibitory synapse and switch neuron excitability from type II to type I. To simulate the spiral waves ob...Spiral waves have been observed in the biological experiments on rat cortex perfused with drugs which can block inhibitory synapse and switch neuron excitability from type II to type I. To simulate the spiral waves observed in the experiment, the spatiotemporal patterns are investigated in a network composed of neurons with type I and II excitabilities and excitatory coupling. Spiral waves emerge when the percentage(p) of neurons with type I excitability in the network is at middle levels, which is dependent on the coupling strength. Compared with other spatial patterns which appear at different p values, spiral waves exhibit optimal spatial correlation at a certain spatial frequency, implying the occurrence of spatial coherence resonance-like phenomenon. Some dynamical characteristics of the network such as mean firing frequency and synchronous degree can be well interpreted with distinct properties between type I excitability and type II excitability. The results not only identify dynamics of spiral waves in neuronal networks composed of neurons with different excitabilities, but also are helpful to understanding the emergence of spiral waves observed in the biological experiment.展开更多
基金supported by Sci-ence Foundation of Heilongjiang Province(No.LC06C28)PhD Research Fund of the Second Affiliated Hospital of Harbin Medical University(No.BS2007-09)Science Foun-dation of Education Department of Heilongjiang Province(No.10553050).
文摘Objective Concentration of extracellular calcium ([Ca2+]o) in the central nervous system decreases substantially in different conditions. It results in facilitating neuronal excitability. The goal of this study is to examine the mechanisms of enhanced neuronal excitation in low [Ca2+]o in order to provide new clues to treat the hyperexcitability diseases in clinic. Methods Whole-cell patch-clamp technique and neuron culture were used in the study. Results The firing threshold of cultured hippocampal neurons decreased markedly in low [Ca2+]o saline. Unexpectedly, apamine and isoprenaline, antagonists of medium afterhyperpolarization (mAHP) and slow AHP (sAHP) respectively, had no statistic significant effect on excitability of neurons. TTX at a low concentration was sufficient to inhibit/Nap, which blocked the increase of firing frequency in low [Ca2+]o. It also reduced the number of spikes in normal [Ca2+]o. Conclusion These results suggest that in cultured hippocampal neurons, modulation of spiking threshold but not AHP may cause the increased excitability in low [Ca2+]o.
基金the National Natural Science Foundation of China (No. 60601010)the Natural Science Foundation of Heilongjiang Province, China (No. D200606)+1 种基金the Postdoctoral Fund of Heilongjiang province, China (No. LBH-Z06110)the Scientific Re- search Fund of Educational Department of Heilongjiang Province, China (No. 11531112).
文摘Objective To observe the effects of y-aminobutyric acid (GABA) on the electric activities of pain-excited neurons (PEN) in nucleus accumbens (NAc) in central nervous system (CNS) of morphine-dependent rats. Methods After GABA or the GABAA-receptor antagonist, bicuculline (Bic), was injected into cerebral ventricles or NAc, right sciatic nerve was stimulated by electrical pulses, which was considered as traumatic pain stimulation. Extracellular recordings methods were used to record the electric activities of PEN in NAc. Results When GABA was injected into intracerebroventricle (ICV) as well as NAc, it could decrease the pain-evoked discharge frequency and prolong the latency of PEN. Bic could interdict the above effects of GABA on the electric activities of PEN. Conclusion Exogenous GABA might have an inhibitory effect on the central pain adjustment. Furthermore, GABA and GABAA receptor participate and mediate the traumatic information transmission process in CNS.
文摘The ability of tetrandrine (Tet), an alkaloid isolated from Radix Stephaniae Tetrandrae, to reduce cortical neuronal injury in cortical cultures derived from fetal rats was quantitatively assessed by examination of morphological changes and measurement of lactate dehydrogenase (LDH) released to the extracellular bathing media Cell cultures exposed to the excitatory amino acids (EAA) 50 μmol L 1 glutamate (Glu), 20 μmol L 1 N methyl D aspartate (NMDA), 300 μmol·L 1 β N oxalylamino L alanine (BMAA, NMDA receptor agonist) or 20 μmol·L 1 β N oxaly lamino L alanine (BOAA, non NMDA receptor agonist) for 24 h at 37℃ showed widespread neuronal injury Tet had little effect on the injury induced by 20 μmol·L 1 NMDA but 10 7 and 10 6 μmol·L 1 Tet did partially attenuate the neuronal degeneration, neuronal loss and LDH efflux resulting from prolonged exposures to 100 μmol·L 1 Glu, 300 μmol·L 1 BMAA and 20 μmol·L 1 BOAA respectively The ability of Tet to reduce the neuronal injury induced by prolonged exposure to EAA may contribute, at least in part, to the reduction of Ca 2+ influx through inhibiting the opening of voltagegated Ca 2+ channels Another mechanism that Tet might have a little inhibitory effect on NMDA receptor on neuronal membrane cannot be excluded, as BMAA has been considered to act as a weak NMDA receptor agonist
基金Supported by the National Natural Science Foundation of China under Grant Nos.11105095 and 11005077by the Natural Science Foundation of Higher Education Institutions of Jiangsu Province under Grant No.11KJB140008
文摘Bistable behavior of neuronal complex networks is investigated in the limited-sustained-activity regime when the network is composed of excitatory and inhibitory neurons.The standard stability analysis is performed on the two metastable states separately.Both theoretical analysis and numerical simulations show consistently that the difference between time scales of excitatory and inhibitory populations can influence the dynamical behaviors of the neuronal networks dramatically,leading to the transition from bistable behaviors with memory effects to the collapse of bistable behaviors.These results may suggest one possible neuronal information processing by only tuning time scales.
基金Project (Nos. 30570585 and 30770548) supported by the National Natural Science Foundation of China
文摘Objective: To directly examine the effects ofcarnosine on neuronal excitation and inhibition in rat hippocampus in vivo. Methods: Artificial cerebrospinal fluid with carnosine was directly administrated over the exposed rat hippocampus. The changes of neuron activity in the CA1 region of hippocampus were evaluated by orthodromically- and antidromically-evoked potentials, as well as paired-pulse stimulation paradigm. Results: In both orthodromic and antidromic response potentials, carnosine transformed population spikes (PSs) with single spike into epileptiform multiple spikes. In addition, similar to the effect of 7-aminobutyric acidA (GABAA) antagonist picrotoxin, camosine decreased paired-pulse stimulating depression significantly. However, no significant change was observed in the spontaneous field potentials during the application of carnosine. Conclusion: The results indicate a disinhibition-induced excitation effect of carnosine on the CA1 pyramidal neurons. It provides important information against the application of carnosine as a potential anticonvulsant in clinical treatment.
基金supported by the National Natural Science Foundation of China(Grant Nos.11372224&11572225)
文摘Spiral waves have been observed in the biological experiments on rat cortex perfused with drugs which can block inhibitory synapse and switch neuron excitability from type II to type I. To simulate the spiral waves observed in the experiment, the spatiotemporal patterns are investigated in a network composed of neurons with type I and II excitabilities and excitatory coupling. Spiral waves emerge when the percentage(p) of neurons with type I excitability in the network is at middle levels, which is dependent on the coupling strength. Compared with other spatial patterns which appear at different p values, spiral waves exhibit optimal spatial correlation at a certain spatial frequency, implying the occurrence of spatial coherence resonance-like phenomenon. Some dynamical characteristics of the network such as mean firing frequency and synchronous degree can be well interpreted with distinct properties between type I excitability and type II excitability. The results not only identify dynamics of spiral waves in neuronal networks composed of neurons with different excitabilities, but also are helpful to understanding the emergence of spiral waves observed in the biological experiment.