AIM: To identify the two polymorphisms of microsomal triglyceride transfer protein (MTP) gene in the Chinese population and to explore their correlation with both hepatitis B virus (HBV) self-limited infection and per...AIM: To identify the two polymorphisms of microsomal triglyceride transfer protein (MTP) gene in the Chinese population and to explore their correlation with both hepatitis B virus (HBV) self-limited infection and persistent infection. METHODS: A total of 316 subjects with self-limited HBV infection and 316 patients with persistent HBV infection (195 subjects without familial history), matched with age and sex, from the Chinese Han population were enrolled in this study. Polymorphisms of MTP at the promoter region -493 and at H297Q were determined by the allele specific polymerase chain reaction (PCR). RESULTS: The ratio of males to females was 2.13:1 for each group and the average age in the self-limited and chronic infection groups was 38.36 and 38.28 years, respectively. None of the allelic distributions deviated significantly from that predicted by the Hardy-Weinberg equilibrium. There was a linkagedisequilibrium between H297Q and -493G/T (D’ = 0.77). As the χ2 test was used, the genotype distribution of MTP -493G/T demonstrated a significant difference between the self-limited infection group and the entire chronic group or the chronic patients with no family history (χ2 = 8.543, P = 0.015 and χ2 = 7.199, P = 0.019). The allele distribution at the MTP-493 position also demonstrated a significant difference between the study groups without family history (χ2 = 6.212, P = 0.013). The T allele emerged as a possible protective factor which may influence the outcomes of HBV infection (OR: 0.59; 95% CI: 0.389-0.897). CONCLUSION: The polymorphism of the MTP gene, T allele at -493, may be involved in determining the HBV infection outcomes, of which the mechanism needs to be further investigated.展开更多
Objective: To construct a PC12 cell strain with neuronal differentiation, and observe the apoptosis and pro- liferation activity effects induced these cells by Amyloid beta-Protein (Aβ-43). Methods: 1) PC12 cells in...Objective: To construct a PC12 cell strain with neuronal differentiation, and observe the apoptosis and pro- liferation activity effects induced these cells by Amyloid beta-Protein (Aβ-43). Methods: 1) PC12 cells in logarithmic growth phase were subcultured for 24 h. After the culture fluid was changed, the cells were treated with Rat-β-NGF and cultured for 9 days. 2) Neuronal differentiation of PC12 cells in logarithmic growth phase were divided into four groups: control group (0), experimental group (1), experimental group (2) and experimental group (3). The concentrations of Aβ in the four groups were 0 μmol/L, 1.25 μmol/L, 2.5 μmol/L and 5 μmol/L, respectively. The cells were harvested at 24, 48 and 72 h later and stained with AnnexinV-FITC/PI after centrifugation and washing. Then flow cytometry was conducted to examine the apoptosis percentage. 3) NGF-induced PC12 cells were selected and Aβ with different concentrations was added. The final concentrations of Aβ were 0 μmol/L, 1.25 μmol/L, 2.5 μmol/L and 5 μmol/L, respectively. After the cells were incubated in an atmosphere of 5% CO2 at 37 °C in an incubator for 72 h, the OD values were examined. Results: 1) Neuronal differentiated PC12 cell lines were successfully established. 2) Flow cytometric examination indicated that Aβ (1.25, 2.5, and 5.0 μmol/L) could effectively induce apoptosis of neuronal-differented cells at the 24 h, 48 h and 72 h time points. 3) Aβ (0?5.00 μmol/L) had no obvious effect on proliferation or restraining of the neuronal differentiation of the PC12 cells after a 72 h interacting process. Conclusion: This investigation revealed successful neuronal differentiation of the PC12 cell strain. The induction of apoptosis of the neurocytes by various concentrations of Aβ was observed and the in- fluence of Aβ on induced proliferation of PC12 cells by Rat-β-NGF was revealed. This study may provide basis for future research on the molecular cure of AD and interdiction of AD evolution.展开更多
The subventricular zone (SVZ), lining the lateral ventricle in forebrain, retains a population of neuronal precursors with the ability of proliferation in adult mammals. To test the potential of neuronal precursors in...The subventricular zone (SVZ), lining the lateral ventricle in forebrain, retains a population of neuronal precursors with the ability of proliferation in adult mammals. To test the potential of neuronal precursors in adult mice, we transplanted adult SVZ cells labeled with fluorescent dye PKH26 into the lateral ventricle of the mouse brain in different development stages. The preliminary results indicated that the grafted cells were able to survive and migrate into multiple regions of the recipient brain, including SVZ, the third ventricle, thalamus, superior colliculus, inferior colliculus, cerebellum and olfactory bulb etc; and the amount of survival cells in different brain regions was correlated with the development stage of the recipient brain. Immunohistochemical studies showed that most of the grafted cells migrating into the specific target could express neuronal or astrocytic marker. Our results revealed that the neuronal precursors in adult SVZ still retained immortality and ability of proliferation, which is likely to be induced by some environmental factors.展开更多
Author present the interplay between different neuron types in the spontaneous electrical activity of low density cortical in vitro networks grown on MEA (multielectrode arrays) of glass neurochips. In 10% of the ne...Author present the interplay between different neuron types in the spontaneous electrical activity of low density cortical in vitro networks grown on MEA (multielectrode arrays) of glass neurochips. In 10% of the networks, the continuously spiking activity of some neurons was inhibited by synchronous bursts or superbursts of the majority of the other neurons. Immunohistochemical staining subsequent to MEA recordings suggest that the synchronously bursting neurons are parvalbumin-positive interneurons with abundant axonal ramifications. Blocking chemical synaptic transmission by Ca2+-free medium revealed that the curbed spiking neurons are intrinsically active. It is assumed that these neurons are pyramidal cells which may be inhibited by groups of synchronously bursting interneurons. It is propose that the observed burst-induced inhibition is an important principle in the temporal organization of neuronal activity as well as in the restriction of excitation, and thus essential for information processing in the cerebral cortex.展开更多
The prefrontal cortex(PFC)is thought to be involved in higher order cognitive functions,such as in working memory,abstract categorization,and reward processing.It has been reported that two distinct neuron classes(put...The prefrontal cortex(PFC)is thought to be involved in higher order cognitive functions,such as in working memory,abstract categorization,and reward processing.It has been reported that two distinct neuron classes(putative pyramidal cells and interneurons)in the PFC played different functional roles in neural circuits involved in forming working memory and abstract categories.However,it remains elusive how the two types of neurons process reward information in the PFC.To investigate this issue,the activity of single neurons was extracellularly recorded in the PFC of the monkey performing a reward predicting task.PFC neurons were classified into putative pyramidal cells and interneurons,respectively,based on the waveforms of action potentials.Both the two types of neurons encoded reward information and discriminated two reward conditions(the preferred reward condition vs.the nonpreferred reward condition).However,the putative pyramidal neurons had better and more reliable discriminability than the putative interneurons.Also,the pyramidal cells represented reward information in the preferred reward condition,but not in the nonpreferred reward condition by raising their firing rates relative to the baseline rates.In contrast,the interneurons encoded reward information in the nonpreferred reward condition,but not in the preferred reward condition by inhibiting their discharge rates relative to the baseline rates.These results suggested that the putative pyramidal cells and interneurons had complementary functions in reward processing.These findings may help to clarify individual functions of each type of neurons in PFC neuronal circuits involved in reward processing.展开更多
基金F.Hoffmann-La Roche Ltd Switzerland and the National High Technology ResearchDevelopment Program of China (863 Program), No. 2006AA02A411
文摘AIM: To identify the two polymorphisms of microsomal triglyceride transfer protein (MTP) gene in the Chinese population and to explore their correlation with both hepatitis B virus (HBV) self-limited infection and persistent infection. METHODS: A total of 316 subjects with self-limited HBV infection and 316 patients with persistent HBV infection (195 subjects without familial history), matched with age and sex, from the Chinese Han population were enrolled in this study. Polymorphisms of MTP at the promoter region -493 and at H297Q were determined by the allele specific polymerase chain reaction (PCR). RESULTS: The ratio of males to females was 2.13:1 for each group and the average age in the self-limited and chronic infection groups was 38.36 and 38.28 years, respectively. None of the allelic distributions deviated significantly from that predicted by the Hardy-Weinberg equilibrium. There was a linkagedisequilibrium between H297Q and -493G/T (D’ = 0.77). As the χ2 test was used, the genotype distribution of MTP -493G/T demonstrated a significant difference between the self-limited infection group and the entire chronic group or the chronic patients with no family history (χ2 = 8.543, P = 0.015 and χ2 = 7.199, P = 0.019). The allele distribution at the MTP-493 position also demonstrated a significant difference between the study groups without family history (χ2 = 6.212, P = 0.013). The T allele emerged as a possible protective factor which may influence the outcomes of HBV infection (OR: 0.59; 95% CI: 0.389-0.897). CONCLUSION: The polymorphism of the MTP gene, T allele at -493, may be involved in determining the HBV infection outcomes, of which the mechanism needs to be further investigated.
文摘Objective: To construct a PC12 cell strain with neuronal differentiation, and observe the apoptosis and pro- liferation activity effects induced these cells by Amyloid beta-Protein (Aβ-43). Methods: 1) PC12 cells in logarithmic growth phase were subcultured for 24 h. After the culture fluid was changed, the cells were treated with Rat-β-NGF and cultured for 9 days. 2) Neuronal differentiation of PC12 cells in logarithmic growth phase were divided into four groups: control group (0), experimental group (1), experimental group (2) and experimental group (3). The concentrations of Aβ in the four groups were 0 μmol/L, 1.25 μmol/L, 2.5 μmol/L and 5 μmol/L, respectively. The cells were harvested at 24, 48 and 72 h later and stained with AnnexinV-FITC/PI after centrifugation and washing. Then flow cytometry was conducted to examine the apoptosis percentage. 3) NGF-induced PC12 cells were selected and Aβ with different concentrations was added. The final concentrations of Aβ were 0 μmol/L, 1.25 μmol/L, 2.5 μmol/L and 5 μmol/L, respectively. After the cells were incubated in an atmosphere of 5% CO2 at 37 °C in an incubator for 72 h, the OD values were examined. Results: 1) Neuronal differentiated PC12 cell lines were successfully established. 2) Flow cytometric examination indicated that Aβ (1.25, 2.5, and 5.0 μmol/L) could effectively induce apoptosis of neuronal-differented cells at the 24 h, 48 h and 72 h time points. 3) Aβ (0?5.00 μmol/L) had no obvious effect on proliferation or restraining of the neuronal differentiation of the PC12 cells after a 72 h interacting process. Conclusion: This investigation revealed successful neuronal differentiation of the PC12 cell strain. The induction of apoptosis of the neurocytes by various concentrations of Aβ was observed and the in- fluence of Aβ on induced proliferation of PC12 cells by Rat-β-NGF was revealed. This study may provide basis for future research on the molecular cure of AD and interdiction of AD evolution.
基金We are grateful to Professor Zhijie Chang of Ts-inghua University for help with the image analy-sis.This project was supported by National Sci-ence Funds (39870097) and Science Funds of Beijing(7992025).
文摘The subventricular zone (SVZ), lining the lateral ventricle in forebrain, retains a population of neuronal precursors with the ability of proliferation in adult mammals. To test the potential of neuronal precursors in adult mice, we transplanted adult SVZ cells labeled with fluorescent dye PKH26 into the lateral ventricle of the mouse brain in different development stages. The preliminary results indicated that the grafted cells were able to survive and migrate into multiple regions of the recipient brain, including SVZ, the third ventricle, thalamus, superior colliculus, inferior colliculus, cerebellum and olfactory bulb etc; and the amount of survival cells in different brain regions was correlated with the development stage of the recipient brain. Immunohistochemical studies showed that most of the grafted cells migrating into the specific target could express neuronal or astrocytic marker. Our results revealed that the neuronal precursors in adult SVZ still retained immortality and ability of proliferation, which is likely to be induced by some environmental factors.
文摘Author present the interplay between different neuron types in the spontaneous electrical activity of low density cortical in vitro networks grown on MEA (multielectrode arrays) of glass neurochips. In 10% of the networks, the continuously spiking activity of some neurons was inhibited by synchronous bursts or superbursts of the majority of the other neurons. Immunohistochemical staining subsequent to MEA recordings suggest that the synchronously bursting neurons are parvalbumin-positive interneurons with abundant axonal ramifications. Blocking chemical synaptic transmission by Ca2+-free medium revealed that the curbed spiking neurons are intrinsically active. It is assumed that these neurons are pyramidal cells which may be inhibited by groups of synchronously bursting interneurons. It is propose that the observed burst-induced inhibition is an important principle in the temporal organization of neuronal activity as well as in the restriction of excitation, and thus essential for information processing in the cerebral cortex.
基金supported by Grant-in-aid for Scientific Research on Innovative Areas,Grant-in-aid for Scientific Research(A),and Tamagawa Global Center of Excellence,Japanthe National Natural Science Foundation of China(Grant No.11232005)+1 种基金the Fundamental Research Funds for the Central Universities of ChinaShanghai Pujiang Program(Grant No.13PJ1402000)
文摘The prefrontal cortex(PFC)is thought to be involved in higher order cognitive functions,such as in working memory,abstract categorization,and reward processing.It has been reported that two distinct neuron classes(putative pyramidal cells and interneurons)in the PFC played different functional roles in neural circuits involved in forming working memory and abstract categories.However,it remains elusive how the two types of neurons process reward information in the PFC.To investigate this issue,the activity of single neurons was extracellularly recorded in the PFC of the monkey performing a reward predicting task.PFC neurons were classified into putative pyramidal cells and interneurons,respectively,based on the waveforms of action potentials.Both the two types of neurons encoded reward information and discriminated two reward conditions(the preferred reward condition vs.the nonpreferred reward condition).However,the putative pyramidal neurons had better and more reliable discriminability than the putative interneurons.Also,the pyramidal cells represented reward information in the preferred reward condition,but not in the nonpreferred reward condition by raising their firing rates relative to the baseline rates.In contrast,the interneurons encoded reward information in the nonpreferred reward condition,but not in the preferred reward condition by inhibiting their discharge rates relative to the baseline rates.These results suggested that the putative pyramidal cells and interneurons had complementary functions in reward processing.These findings may help to clarify individual functions of each type of neurons in PFC neuronal circuits involved in reward processing.