With the changes of life style, diabetes and its complications have become a major cause of morbidity and mortality. It is reasonable to anticipate a continued rise in the incidence of diabetes and its complications a...With the changes of life style, diabetes and its complications have become a major cause of morbidity and mortality. It is reasonable to anticipate a continued rise in the incidence of diabetes and its complications along with the aging of the population, increase in adult obesity rate, and other risk factors. Diabetic en- cephalopathy is one of the severe microvascular complications of diabetes, characterized by impaired cogni- tive functions, and electrophysiological, neurochemical, and structural abnormalities. It may involve direct neuronal damage caused by intracellular glucose. However, the pathogenesis of this disease is complex and its diagnosis is not very clear. Previous researches have suggested that chronic metabolic alterations, vascular changes, and neuronal apoptosis may play important roles in neuronai loss and damaged cognitive functions. Multiple factors are responsible for neuronal apoptosis, such as disturbed insulin growth factor (IGF) system, hyperglycemia, and the aging process. Recent data suggest that insulin/C-peptide deficiency may exert a primary and key effect in diabetic encephalopathy. Administration of C-peptide partially improves the condition of the IGF system in the brain and prevents neuronal apoptosis in the hippocampus of diabetic patients. Those findings provide a basis for application of C-peptide as a potentially effective therapy for diabetes and diabetic encephalopathy.展开更多
Objective: To analyze the role of Caspase 3 in neuronal apoptosis after acute brain injury. Methods: Experiments were carried out with rat diffuse brain trauma model. The neuronal DNA injury in cortex and hippocampus ...Objective: To analyze the role of Caspase 3 in neuronal apoptosis after acute brain injury. Methods: Experiments were carried out with rat diffuse brain trauma model. The neuronal DNA injury in cortex and hippocampus was observed by TUNEL stain. The mRNA and protein expressions and enzyme activation of Caspase 3 were observed by Northern blot, in situ hybridization, immunohistochemistry stain and Western blot, respectively. Special Caspase 3 enzyme inhibitor was used to observe the therapeutic effect.Results: TUNEL positive neurons appeared 2 hours after severe trauma, peaked at 1 day and lasted for 7 days. Northern blot showed that the Caspase 3 mRNA expression was increased and peaked at 1 day, about twice higher than the control. In the area of cortex and hippocampus, positive mRNA staining neurons appeared most distinct on one day. With the antibody for Caspase 3 P20 subunit, the active Caspase 3 expression peaked at 1 3 days. The electrophoresis band of PARP degradation would be seen by Western blot. Caspase 3 enzyme inhibitor could reduce apoptotic neuronal death without any effect on Caspase 3 P20 subunit expression. Conclusions: After brain trauma, Caspase 3 mRNA and protein expressions and enzyme activation are enhanced in combination with neuronal apoptosis. Special Caspase 3 enzyme inhibitor can apparently decrease the neuronal apoptosis.展开更多
Objective: To observe human neuronal apoptosis secondary to traumatic brain injury, and to elucidate its regulative mechanism and the change of expression of apoptosis-related genes. Methods: Specimens of brain were c...Objective: To observe human neuronal apoptosis secondary to traumatic brain injury, and to elucidate its regulative mechanism and the change of expression of apoptosis-related genes. Methods: Specimens of brain were collected from cases of traumatic brain injury in humans. The histological and cellular morphology was examined by light and electron microscopy. The extent of DNA injury to cortical neurons was detected by using TUNEL. By in situ hybridisation and immunohistochemistry the mRNA changes and protein expression of Bcl-2, Bax, p53, and caspase 3 p20 subunit were observed. Results: Apoptotic neurons appeared following traumatic brain injury, peaked at 24 hours and lasted for 7 days. In normal brain tissue activated caspase 3 was rare, but a short time after trauma it became activated. The activity peaked at 20-28 hours and remained higher than normal for 5-7 days. There was no expression of Bcl-2 mRNA and Bcl-2 protein in normal brain tissue but 8 hours after injury their expression became evident and then increased, peaked at 2-3 days and remained higher than normal for 5-7 days. The primary expression of Bax-mRNA and Bax protein was high in normal brain tissue. At 20-28 hours they increased and remained high for 2-3 days; on the 7th days they returned to a normal level. In normal brain tissue, p53mRNA and P53 were minimally expressed. Increased expression was detected at the 8th hour, and decreased at 20-28 hours but still remained higher than normal on the 5th day. Conclusions: Following traumatic injury to the human brain, apoptotic neurons appear around the focus of trauma. The mRNA and protein expression of Bcl-2, Bax and p53 and the activity of caspase 3 enzyme are increased.展开更多
文摘With the changes of life style, diabetes and its complications have become a major cause of morbidity and mortality. It is reasonable to anticipate a continued rise in the incidence of diabetes and its complications along with the aging of the population, increase in adult obesity rate, and other risk factors. Diabetic en- cephalopathy is one of the severe microvascular complications of diabetes, characterized by impaired cogni- tive functions, and electrophysiological, neurochemical, and structural abnormalities. It may involve direct neuronal damage caused by intracellular glucose. However, the pathogenesis of this disease is complex and its diagnosis is not very clear. Previous researches have suggested that chronic metabolic alterations, vascular changes, and neuronal apoptosis may play important roles in neuronai loss and damaged cognitive functions. Multiple factors are responsible for neuronal apoptosis, such as disturbed insulin growth factor (IGF) system, hyperglycemia, and the aging process. Recent data suggest that insulin/C-peptide deficiency may exert a primary and key effect in diabetic encephalopathy. Administration of C-peptide partially improves the condition of the IGF system in the brain and prevents neuronal apoptosis in the hippocampus of diabetic patients. Those findings provide a basis for application of C-peptide as a potentially effective therapy for diabetes and diabetic encephalopathy.
文摘Objective: To analyze the role of Caspase 3 in neuronal apoptosis after acute brain injury. Methods: Experiments were carried out with rat diffuse brain trauma model. The neuronal DNA injury in cortex and hippocampus was observed by TUNEL stain. The mRNA and protein expressions and enzyme activation of Caspase 3 were observed by Northern blot, in situ hybridization, immunohistochemistry stain and Western blot, respectively. Special Caspase 3 enzyme inhibitor was used to observe the therapeutic effect.Results: TUNEL positive neurons appeared 2 hours after severe trauma, peaked at 1 day and lasted for 7 days. Northern blot showed that the Caspase 3 mRNA expression was increased and peaked at 1 day, about twice higher than the control. In the area of cortex and hippocampus, positive mRNA staining neurons appeared most distinct on one day. With the antibody for Caspase 3 P20 subunit, the active Caspase 3 expression peaked at 1 3 days. The electrophoresis band of PARP degradation would be seen by Western blot. Caspase 3 enzyme inhibitor could reduce apoptotic neuronal death without any effect on Caspase 3 P20 subunit expression. Conclusions: After brain trauma, Caspase 3 mRNA and protein expressions and enzyme activation are enhanced in combination with neuronal apoptosis. Special Caspase 3 enzyme inhibitor can apparently decrease the neuronal apoptosis.
文摘Objective: To observe human neuronal apoptosis secondary to traumatic brain injury, and to elucidate its regulative mechanism and the change of expression of apoptosis-related genes. Methods: Specimens of brain were collected from cases of traumatic brain injury in humans. The histological and cellular morphology was examined by light and electron microscopy. The extent of DNA injury to cortical neurons was detected by using TUNEL. By in situ hybridisation and immunohistochemistry the mRNA changes and protein expression of Bcl-2, Bax, p53, and caspase 3 p20 subunit were observed. Results: Apoptotic neurons appeared following traumatic brain injury, peaked at 24 hours and lasted for 7 days. In normal brain tissue activated caspase 3 was rare, but a short time after trauma it became activated. The activity peaked at 20-28 hours and remained higher than normal for 5-7 days. There was no expression of Bcl-2 mRNA and Bcl-2 protein in normal brain tissue but 8 hours after injury their expression became evident and then increased, peaked at 2-3 days and remained higher than normal for 5-7 days. The primary expression of Bax-mRNA and Bax protein was high in normal brain tissue. At 20-28 hours they increased and remained high for 2-3 days; on the 7th days they returned to a normal level. In normal brain tissue, p53mRNA and P53 were minimally expressed. Increased expression was detected at the 8th hour, and decreased at 20-28 hours but still remained higher than normal on the 5th day. Conclusions: Following traumatic injury to the human brain, apoptotic neurons appear around the focus of trauma. The mRNA and protein expression of Bcl-2, Bax and p53 and the activity of caspase 3 enzyme are increased.