期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Group-Depth U-Net的电子显微图像中神经元结构分割 被引量:2
1
作者 李玉慧 梁创学 李军 《中国医学物理学杂志》 CSCD 2020年第6期720-725,共6页
针对电子显微(EM)成像存在边界有损、模糊不均匀以及神经元结构本身轮廓纹理复杂难以定位的问题,提出一种深层卷积神经网络模型Group-Depth U-Net,以实现EM图像中神经元结构的自动分割。该模型采用更加深层的U-Net架构作为骨架网络,以... 针对电子显微(EM)成像存在边界有损、模糊不均匀以及神经元结构本身轮廓纹理复杂难以定位的问题,提出一种深层卷积神经网络模型Group-Depth U-Net,以实现EM图像中神经元结构的自动分割。该模型采用更加深层的U-Net架构作为骨架网络,以获取更加丰富的图像特征信息;同时采用分组卷积网络结构,使模型更加高效、防止过拟合,从而提高分割的准确性与效率。公开的数据集实验表明该模型相比U-Net达到了更好的分割准确率。 展开更多
关键词 深层卷积神经网络 分组卷积网络 神经元结构分割 电子显微成像 Group-Depth U-Net
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部