期刊文献+
共找到78篇文章
< 1 2 4 >
每页显示 20 50 100
人工神经元网学习的多模式现象 被引量:3
1
作者 田大钢 费奇 郭俐 《预测》 CSSCI 1997年第4期60-62,共3页
本文指出人工神经元网学习存在的多模式现象,说明根据人工神经元网学习权重的大小来判断因子重要性必须慎重。
关键词 人工神经元网 多模式现象 预测
下载PDF
基于神经元网络的电网谐波联动预警系统设计 被引量:6
2
作者 杜俊杰 梁俊伟 +1 位作者 和立辉 杜洋 《电子设计工程》 2019年第11期5-8,14,共5页
由于传统系统无法对多种谐波进行预警处理,导致预警误差较大,为了解决该问题,提出了基于神经元网络的电网谐波联动预警系统设计。根据神经元网络工作原理设计系统总体结构,采用2205型号采集卡对数据进行采集,使用4046型号单片集成锁相环... 由于传统系统无法对多种谐波进行预警处理,导致预警误差较大,为了解决该问题,提出了基于神经元网络的电网谐波联动预警系统设计。根据神经元网络工作原理设计系统总体结构,采用2205型号采集卡对数据进行采集,使用4046型号单片集成锁相环,在一定范围内跟踪电压信号变化,保证输入与输出信号频率一致,设计数字处理器与总线连接电路,使不同神经元网络节点都能接收到相同数据。在软件功能内设置电网参数,实时检测电流变化,结合神经元模型设置输入矢量,获取神经元输出值,采用最小学习算法,调节连接权值,通过分析超过额定值电流和时间关系,实现联动预警系统设计。由实验结果可知,该系统最大预警误差为0.0063,不会对系统预警造成任何影响。 展开更多
关键词 神经元网 谐波 联动预警 采集卡 锁相环 超过额定值
下载PDF
基于神经元网和带死区的最小二乘算法的非线性离散时间系统的自适应控制(英文) 被引量:4
3
作者 解学军 王远 《控制理论与应用》 EI CAS CSCD 北大核心 1999年第3期355-360,379,共7页
针对非线性离散时间系统,提出了一种用带死区的最小二乘算法去调节神经网参数的算法,同其他算法相比,这种算法具有非常高的收敛速度.对于这种自适应控制算法,证明了闭环系统的所有信号是有界的,跟踪误差收敛到以零为原点的球中.
关键词 神经元网 最小二乘法 自适应控制 离散时间系统
下载PDF
采用人工神经元网计算和模拟试验测定钢支护支架的最大支承力
4
《煤矿安全》 CAS 北大核心 2007年第11期41-41,共1页
波兰矿业研究总院对各种类型钢支护支架进行了20多年的试验台试验,取得了一些强度参数:标准的最大Fmax;和工作Fp支承能力。这对于长巷道的经济支护和安全起着很重要作用。在总院机械装置试验室的试验台上研究了600多LP型各种井下断... 波兰矿业研究总院对各种类型钢支护支架进行了20多年的试验台试验,取得了一些强度参数:标准的最大Fmax;和工作Fp支承能力。这对于长巷道的经济支护和安全起着很重要作用。在总院机械装置试验室的试验台上研究了600多LP型各种井下断面钢支架的最大支持力,其中有直线的和弯曲的构件,以及直角的和拱形的。试验结果以取得安全技术合格证书和构成人工神经元网与设计阶段参数计算作为基础。 展开更多
关键词 人工神经元网 支护支架 试验测定 计算 型钢 支承力 试验台试验 模拟
下载PDF
围神经元网、硫酸软骨素蛋白多糖受体及其对神经可塑性的调节作用(英文) 被引量:3
5
作者 缪庆龙 叶倩 章晓辉 《生理学报》 CAS CSCD 北大核心 2014年第4期387-397,共11页
围神经元网是中枢神经系统中一种包绕在特定类型神经元胞体和近端神经突周围的细胞外基质网络。在1883年,围神经元网最早被Camillo Golgi所描述,直到近几十年,研究人员才对其分子组成、发育成熟以及潜在的功能有密集的研究。研究表明,... 围神经元网是中枢神经系统中一种包绕在特定类型神经元胞体和近端神经突周围的细胞外基质网络。在1883年,围神经元网最早被Camillo Golgi所描述,直到近几十年,研究人员才对其分子组成、发育成熟以及潜在的功能有密集的研究。研究表明,围神经元网主要由透明质酸、硫酸软骨素蛋白多糖、连接蛋白和肌腱蛋白-R组成。围神经元网在神经发育的晚期才渐次出现,它的发育成熟水平和神经可塑性水平的高低呈负相关。功能上,一方面,围神经网络被认为在稳定细胞外微环境、维持被包裹神经元的性能和保护被包裹的神经元免受有害物质的影响等方面起到了重要的作用,围神经元网的异常可以导致诸如癫痫、中风和阿尔茨海默病等中枢神经系统的机能障碍;另一方面,围神经元网作为包裹在细胞外的一道屏障限制了神经可塑性的发生和阻碍了神经损伤后的再生。在成年动物中,用软骨素酶法降解围神经元网可以促进脊髓损伤后的功能修复以及恢复活动依赖的中枢神经系统可塑性调节机制,表明围神经元网在调节神经可塑性方面起到了非常重要的作用。本文就早期发育中活动依赖的围神经网络的形成和围神经网络信号通路中的重要分子——硫酸软骨素蛋白多糖受体的研究进展进行综述,并就它们如何调节神经可塑性展开讨论。 展开更多
关键词 神经元网 硫酸软骨素蛋白多糖受体 突触 硫酸软骨素酶ABC 脊髓损伤 神经可塑性
原文传递
基于神经网络的涡轮泵多故障诊断 被引量:10
6
作者 张炜 张玉祥 黄先祥 《推进技术》 EI CAS CSCD 北大核心 2003年第1期17-20,39,共5页
针对液体火箭发动机的涡轮泵系统中 ,常出现多故障同时发生的现象 ,分析了涡轮泵常见故障的特征表现 ,建立了涡轮泵系统的标准故障模式。在此基础上 ,提出了采用建立并行BP神经网络进行多故障诊断分类的方法。结果表明 ,并行BP神经网络... 针对液体火箭发动机的涡轮泵系统中 ,常出现多故障同时发生的现象 ,分析了涡轮泵常见故障的特征表现 ,建立了涡轮泵系统的标准故障模式。在此基础上 ,提出了采用建立并行BP神经网络进行多故障诊断分类的方法。结果表明 ,并行BP神经网络结构简单 ,学习诊断速度快 ,对单一故障的诊断分类优于基本BP网络 。 展开更多
关键词 液体推进剂火箭发动机 涡轮泵 人工神经元网 故障诊断
下载PDF
基于BP神经网络电动轮汽车行驶状态监测分析 被引量:6
7
作者 肖健 曾令全 《机械设计与制造》 北大核心 2019年第5期237-240,共4页
行驶状态监测是电动轮汽车整车控制的基础,也是整车网略技术发展的基础。针对电动轮车辆行驶状态监测评估分析,设计分析系统,在此系统中实现了对总线数据的实时监控研究,总线的时间特性与占用率的评估,总线通信数据的存储。通过分析判... 行驶状态监测是电动轮汽车整车控制的基础,也是整车网略技术发展的基础。针对电动轮车辆行驶状态监测评估分析,设计分析系统,在此系统中实现了对总线数据的实时监控研究,总线的时间特性与占用率的评估,总线通信数据的存储。通过分析判定车辆行驶状态所需要的数据以及数据的测量方法,并且利用Matlab使用BP算法建立了BP神经元三层网络模型,预测出判定车辆行驶状态的参数,并与实际理论公式判定参数进行比较,结果表明相对误差在范围内,由此可见用BP神经元网络来实现判定车辆行驶状态参数的方法是可行的,可以作为设计使用的参考。 展开更多
关键词 电动轮汽车 BP算法 神经元网 模型 行驶状态
下载PDF
基于PID神经网络的智能车舵机控制系统研究 被引量:5
8
作者 刘石红 党超亮 王能才 《工业仪表与自动化装置》 2014年第6期97-101,共5页
针对传统PID控制算法在电磁导航智能车舵机偏差处理中存在比例、积分、微分参数一经确定,不能在线调整,不具有自适应能力的缺点,提出了将PID神经元网络(PIDNN)控制器及其算法应用到智能车的舵机控制系统中来对传统PID控制进行改进。PIDN... 针对传统PID控制算法在电磁导航智能车舵机偏差处理中存在比例、积分、微分参数一经确定,不能在线调整,不具有自适应能力的缺点,提出了将PID神经元网络(PIDNN)控制器及其算法应用到智能车的舵机控制系统中来对传统PID控制进行改进。PIDNN控制系统不依赖智能车舵机的数学模型,能够根据控制效果在线训练和学习,调整网络连接权重值,最终使系统的目标函数达到最小来实现智能车的舵机控制。仿真测试表明,PIDNN控制系统的响应快,无超调,无静差,与传统PID控制算法相比,大大提高了智能车舵机控制系统的性能。 展开更多
关键词 电磁导航智能车 舵机控制 PID神经元网
下载PDF
神经元周围网和Nogo受体在大鼠视皮层的发育及氟西汀对其的影响 被引量:3
9
作者 解来青 徐国旭 +2 位作者 张积 倪勇 宋鄂 《中华眼科杂志》 CAS CSCD 北大核心 2019年第1期37-45,共9页
目的探讨视皮层神经元周围网(PNN)及Nogo受体在大鼠视觉发育过程中的变化及氟西汀对成年大鼠视皮层PNN及Nogo受体的影响。方法实验研究。(1)按出生后周龄(1、3、5、7、9周)将Wistar大鼠分为5组,每组8只,观察大鼠脑正常发育过程中视皮层... 目的探讨视皮层神经元周围网(PNN)及Nogo受体在大鼠视觉发育过程中的变化及氟西汀对成年大鼠视皮层PNN及Nogo受体的影响。方法实验研究。(1)按出生后周龄(1、3、5、7、9周)将Wistar大鼠分为5组,每组8只,观察大鼠脑正常发育过程中视皮层PNN及Nogo受体的变化;(2)根据氟西汀给药周数不同将成年(出生后10周)大鼠采用完全随机化法分为对照组及氟西汀2、4、6、8周组,每组8只,观察不同给药时间对大鼠脑视皮层PNN及Nogo受体的影响;(3)设立双眼形觉剥夺(BFD)组作为阳性对照,按干预方式不同将成年(出生后10周)大鼠采用完全随机化法分为阴性对照组、氟西汀组、BFD组和BFD+氟西汀组,每组8只,观察不同干预方法对大鼠脑视皮层PNN和Nogo受体的影响效果。采用免疫荧光法观察各组大鼠脑视皮层Nogo受体和PNN的表达变化,采用免疫印迹法检测各组大鼠脑视皮层Nogo受体蛋白的表达。组间比较根据方差齐性与否,选择t检验、方差分析或秩和检验;多重比较采用Bonferroni法,并对检验水准进行调整;组内指标变化趋势采用简单线性回归分析。结果(1)随大鼠发育周龄增加,PNN(b=0.97,P=0.005)及Nogo受体阳性细胞密度(b=0.96,P=0.010)在视皮层呈逐渐增加;Nogo受体蛋白表达随出生后周龄逐渐增加(b=0.96,P=0.010),7周龄组(131.83±3.78)接近成年(9周龄组,135.11±3.92)水平(Z=1.93,P=0.062)。(2)免疫荧光显示氟西汀可显著降低成年大鼠视皮层的PNN,氟西汀喂养健康成年大鼠4周视皮层PNN阳性细胞密度(86.22±7.68)个/mm^2与3周龄大鼠(84.21±6.68)个/mm^2相当(t=2.08,P=0.073)。随氟西汀喂养周数增加,成年大鼠视皮层PNN(b=-0.88,P=0.040)及Nogo受体(b=-0.90,P=0.007)阳性细胞密度逐渐下降。(3)免疫荧光显示氟西汀组、BFD组及BFD+氟西汀组均较阴性对照组出现PNN(t=10.09、7.64、13.01;P=0.007、0.011、0.001)及Nogo受体阳性细胞密度(t=13.42、11.47、18.13;P=0.012、0.013、0.001)的下降;但氟西汀组与BFD组间Nogo受体比较差异无统计学意义(t=2.41,P=0.153)。免疫印迹显示氟西汀组、BFD组及BFD+氟西汀组相对阴性对照组Nogo受体蛋白的表达量分别为81.83±2.68、81.39±2.09及72.90±1.01,多组间差异有统计学意义(H=5.69,P=0.041);且氟西汀联合BFD降低Nogo受体蛋白表达上与各自单独作用不同,表现为二者联合效果优于各自单独效果(氟西汀组与BFD+氟西汀组比较,Z=4.22,P=0.005;BFD组与BFD+氟西汀组比较,Z=3.09,P=0.010)。结论大鼠脑视皮层的PNN和Nogo受体的发育呈视觉经验依赖性,随大鼠视觉发育,其视皮层PNN和Nogo受体逐渐增加;氟西汀可显著降低成年大鼠脑视皮层内的PNN和Nogo受体,且其效果与BFD相当。 展开更多
关键词 视皮质 Nogo受体类 神经元可塑性 氟西汀 神经元周围
原文传递
神经元周围基质网与其在药物成瘾中的功能
10
作者 付杨雪 王文豪 章文 《中国药物依赖性杂志》 CAS CSCD 2018年第5期315-317,323,共4页
神经元周围基质网(perineuronal nets,PNNs)在中枢系统中作为一种特殊而重要的细胞外基质,以网状结构包绕在小清蛋白阳性(Parvalbumin+,PV+)中间神经元周围,并参与了一系列重要的神经生物学功能。本文主要介绍了PNNs的主要构成与成熟过... 神经元周围基质网(perineuronal nets,PNNs)在中枢系统中作为一种特殊而重要的细胞外基质,以网状结构包绕在小清蛋白阳性(Parvalbumin+,PV+)中间神经元周围,并参与了一系列重要的神经生物学功能。本文主要介绍了PNNs的主要构成与成熟过程,简述了PNNs与学习和记忆之间的联系和相互影响,以及PNNs的组成蛋白在这一过程中的作用。最后以病理性意义为着眼点,介绍了PNNs在成瘾过程中发挥的重要功能。 展开更多
关键词 药物成瘾 神经元网 中间神经元 学习与记忆
原文传递
A REALIZATION OF FUZZY LOGIC BY A NEURAL NETWORK 被引量:1
11
作者 杨忠 鲍明 赵淳生 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1995年第1期104-108,共5页
This paper proposes a Fuzzy Neural Network (FNN) model, which uses a propagation algorithm. A logical operation is defined by a set of weights which are independent of inputs. The realization of the basic And,Or and N... This paper proposes a Fuzzy Neural Network (FNN) model, which uses a propagation algorithm. A logical operation is defined by a set of weights which are independent of inputs. The realization of the basic And,Or and Negation fuzzy logical operations is shown by the fuzzy neuron. A example in fault diagnosis is put forward and the result witnesses some effectiveness of the new FNN model. 展开更多
关键词 fuzzy logic NEURON neural network propagation algorithm fault diagnosis
下载PDF
Design of hydraulic motor speed control system based on co-simulation of AMESim and Matlab_Simulink 被引量:1
12
作者 孟凡虎 赵素素 +2 位作者 雷晓顺 王娜 高峰 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第3期279-285,共7页
In order to design an effective hydraulic motor speed control system, Matlab_Simiulink and AMESim co-simulation technology is adopted to establish more accurate model and reflect the actual system. The neural... In order to design an effective hydraulic motor speed control system, Matlab_Simiulink and AMESim co-simulation technology is adopted to establish more accurate model and reflect the actual system. The neural network proportion-integration-differentiation (PID) control parameters on-line adjustment is utilized to improve system accuracy, celerity and stability. Simulation results indicate that with the control system proposed in this paper, the system deviation is reduced, therefore accuracy is improved; response speed for step signal and sinusoidal signal gets faster, thus acceleration is rapidly improved; and the system can be restored to the control value in case of interfering, so stability is improved. 展开更多
关键词 speed control system CO-SIMULATION neural network proportion-integration-differentiation (PID) control
下载PDF
Document classification approach by rough-set-based corner classification neural network 被引量:1
13
作者 张卫丰 徐宝文 +1 位作者 崔自峰 徐峻岭 《Journal of Southeast University(English Edition)》 EI CAS 2006年第3期439-444,共6页
A rough set based corner classification neural network, the Rough-CC4, is presented to solve document classification problems such as document representation of different document sizes, document feature selection and... A rough set based corner classification neural network, the Rough-CC4, is presented to solve document classification problems such as document representation of different document sizes, document feature selection and document feature encoding. In the Rough-CC4, the documents are described by the equivalent classes of the approximate words. By this method, the dimensions representing the documents can be reduced, which can solve the precision problems caused by the different document sizes and also blur the differences caused by the approximate words. In the Rough-CC4, a binary encoding method is introduced, through which the importance of documents relative to each equivalent class is encoded. By this encoding method, the precision of the Rough-CC4 is improved greatly and the space complexity of the Rough-CC4 is reduced. The Rough-CC4 can be used in automatic classification of documents. 展开更多
关键词 document classification neural network rough set meta search engine
下载PDF
Springback prediction for incremental sheet forming based on FEM-PSONN technology 被引量:6
14
作者 韩飞 莫健华 +3 位作者 祁宏伟 龙睿芬 崔晓辉 李中伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期1061-1071,共11页
In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. Predicting and controlling springback accurately is essential for the design of the toolpath f... In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. Predicting and controlling springback accurately is essential for the design of the toolpath for ISF. A three-dimensional elasto-plastic finite element model (FEM) was developed to simulate the process and the simulated results were compared with those from the experiment. The springback angle was found to be in accordance with the experimental result, proving the FEM to be effective. A coupled artificial neural networks (ANN) and finite element method technique was developed to simulate and predict springback responses to changes in the processing parameters. A particle swarm optimization (PSO) algorithm was used to optimize the weights and thresholds of the neural network model. The neural network was trained using available FEM simulation data. The results showed that a more accurate prediction of s!oringback can be acquired using the FEM-PSONN model. 展开更多
关键词 incremental sheet forming (ISF) springback prediction finite element method (FEM) artificial neural network (ANN) particle swarm optimization (PSO) algorithm
下载PDF
Prediction of pre-oxidation efficiency of refractory gold concentrate by ozone in ferric sulfate solution using artificial neural networks 被引量:2
15
作者 李青翠 李登新 陈泉源 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第2期413-422,共10页
An artificial neural network model was developed to predict the oxidation of refractory gold concentrate (RGC) by ozone and ferric ions. The concentration of ozone and ferric ions, pulp density, oxygen amount, leach... An artificial neural network model was developed to predict the oxidation of refractory gold concentrate (RGC) by ozone and ferric ions. The concentration of ozone and ferric ions, pulp density, oxygen amount, leaching time and temperature were employed as inputs to the network; the output of the network was the percentage of the ferric extraction iron from RGC. The multilayered feed-forward networks were trained by 33 sets of input-output patterns using a back propagation algorithm; a three-layer network with 8 neurons in the hidden layer gave optimal results. The model gave good predictions of high correlation coefficient (R2=0.966). The predictions by ANN are more accurate when compared with conventional multivariate regression analysis (MVRA). In addition, calculation with ANN model indicates that temperature is the predominant parameter and ozone concentration is the lesser influential parameter in the pre-oxidation process of refractory gold ore. The ANN neural network model accurately estimates the ferric extraction during pretreatment process of RGC in gold smelter plants and can be used to optimize the process parameters. 展开更多
关键词 PRE-OXIDATION multivariate regression analysis artificial neural network refractory gold concentrate
下载PDF
Research of deformation prediction method of soft soil deep foundation pit 被引量:7
16
作者 麻凤海 郑艳 杨帆 《Journal of Coal Science & Engineering(China)》 2008年第4期637-639,共3页
In view of the characteristics of soft soil deep foundation pit for the construction and geotechnical characteristics of the special medium,it is difficult to calculate theoreti- cally accurately structural deformatio... In view of the characteristics of soft soil deep foundation pit for the construction and geotechnical characteristics of the special medium,it is difficult to calculate theoreti- cally accurately structural deformation of the foundation pit,so in the course of excavation on the construction of the information is particularly important.The analysis and compari- son of several popular non-linear forecasting methods,combined with the actual projects, set up a grey theoretical prediction model,time series forecasting model,improved neural network model to predict deformation of the foundation pit.The results show that the use of neural network to predict with high accuracy solution,it is the foundation deformation prediction effective way in underground works with good prospects. 展开更多
关键词 soft soil deep foundation pit deformation prediction neural network grey theory time series analyses
下载PDF
The applying of BP network in forecasting the demand and its growth rate for coal 被引量:4
17
作者 纪成君 刘宏超 《Journal of Coal Science & Engineering(China)》 2001年第1期102-107,共6页
Based on the statistical data from 1975 to 1997, we forecast the growth rate of coal consuming and the quantity in coming decade with the BP neuron network in the article.
关键词 the quantity of coal consuming the growth rate of consuming BP neuron network forecasting
下载PDF
An Intelligent Neural Networks System for Adaptive Learning and Prediction of a Bioreactor Benchmark Process 被引量:2
18
作者 邹志云 于德弘 +2 位作者 冯文强 于鲁平 郭宁 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第1期62-66,共5页
The adaptive learning and prediction of a highly nonlinear and time-varying bioreactor benchmark process is studied using Neur-On-Line, a graphical tool kit for developing and deploying neural networks in the G2 real ... The adaptive learning and prediction of a highly nonlinear and time-varying bioreactor benchmark process is studied using Neur-On-Line, a graphical tool kit for developing and deploying neural networks in the G2 real time intelligent environment,and a new modified Broyden, Fletcher, Goldfarb, and Shanno (BFGS) quasi-Newton algorithm. The modified BFGS algorithm for the adaptive learning of back propagation (BP) neural networks is developed and embedded into NeurOn-Line by introducing a new search method of learning rate to the full memory BFGS algorithm. Simulation results show that the adaptive learning and prediction neural network system can quicklv track the time-varving and nonlinear behavior of the bioreactor. 展开更多
关键词 intelligent system neural networks adaptive learning adaptive prediction bioreactor process
下载PDF
A forming load analysis for extrusion process of AZ31 magnesium 被引量:11
19
作者 ?nder AYER 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第4期741-753,共13页
The effect of extrusion parameters on the extrusion load for AZ31 magnesium alloy was investigated with the support of numerical methods.With this regard,the process temperature,extrusion ratio,friction factor and pun... The effect of extrusion parameters on the extrusion load for AZ31 magnesium alloy was investigated with the support of numerical methods.With this regard,the process temperature,extrusion ratio,friction factor and punch velocity were selected as main parameters for the experiments.Besides,the experimental results were analyzed by using the finite element method(FEM)and artificial neural network(ANN)method to build a numerical model for predicting the forming load.All the experimental and numerical results were compared to each other and it was concluded from the results that the effect of friction factor on the extrusion load is more dominant at lower extrusion temperature for all given extrusion ratios and punch velocities.Besides this,higher extrusion ratios require higher process temperatures to obtain the lower extrusion load.Also,it was observed that the increase in the extrusion speed causes a significant increase in the forming load for all extrusion ratios and extrusion temperatures. 展开更多
关键词 EXTRUSION MAGNESIUM AZ31 finite element method artificial neural network
下载PDF
A novel fully-integrated miniature six-axis force/torque sensor 被引量:5
20
作者 王嘉力 Xie Zongwu +2 位作者 Liu Hong Jiang Li Gao Xiaohui 《High Technology Letters》 EI CAS 2006年第3期235-238,共4页
This paper presents a new designed miniature six DOF (degree of freedom) force/torque sensor. This sensor is fully integrated with a micro DSP (digital signal processor), so all the signal conditioning, A/D, decou... This paper presents a new designed miniature six DOF (degree of freedom) force/torque sensor. This sensor is fully integrated with a micro DSP (digital signal processor), so all the signal conditioning, A/D, decoupling, digital-signals serial output are performed in the sensor. Some experimental results are presented to demonstrate the capability of the proposed design. Finally, a neural network was used for decoupling the interacting signals, compared with the conventional method using the inverse matrix, this new method is more accurate. 展开更多
关键词 six-axis force sensor sensing element CALIBRATION neural network
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部