An artificial neural network model was developed to predict the oxidation of refractory gold concentrate (RGC) by ozone and ferric ions. The concentration of ozone and ferric ions, pulp density, oxygen amount, leach...An artificial neural network model was developed to predict the oxidation of refractory gold concentrate (RGC) by ozone and ferric ions. The concentration of ozone and ferric ions, pulp density, oxygen amount, leaching time and temperature were employed as inputs to the network; the output of the network was the percentage of the ferric extraction iron from RGC. The multilayered feed-forward networks were trained by 33 sets of input-output patterns using a back propagation algorithm; a three-layer network with 8 neurons in the hidden layer gave optimal results. The model gave good predictions of high correlation coefficient (R2=0.966). The predictions by ANN are more accurate when compared with conventional multivariate regression analysis (MVRA). In addition, calculation with ANN model indicates that temperature is the predominant parameter and ozone concentration is the lesser influential parameter in the pre-oxidation process of refractory gold ore. The ANN neural network model accurately estimates the ferric extraction during pretreatment process of RGC in gold smelter plants and can be used to optimize the process parameters.展开更多
Before any rock engineering project,mechanical parameters of rocks such as uniaxial compressive strength and young modulus of intact rock get measured using laboratory or in-situ tests,but in some situations preparing...Before any rock engineering project,mechanical parameters of rocks such as uniaxial compressive strength and young modulus of intact rock get measured using laboratory or in-situ tests,but in some situations preparing the required specimens is impossible.By this time,several models have been established to evaluate UCS and E from rock substantial properties.Artificial neural networks are powerful tools which are employed to establish predictive models and results have shown the priority of this technique compared to classic statistical techniques.In this paper,ANN and multivariate statistical models considering rock textural characteristics have been established to estimate UCS of rock and to validate the responses of the established models,they were compared with laboratory results.For this purpose a data set for 44 samples of sandstone was prepared and for each sample some textural characteristics such as void,mineral content and grain size as well as UCS were determined.To select the best predictors as inputs of the UCS models,this data set was subjected to statistical analyses comprising basic descriptive statistics,bivariate correlation,curve fitting and principal component analyses.Results of such analyses have shown that void,ferroan calcitic cement,argillaceous cement and mica percentage have the most effect on USC.Two predictive models for UCS were developed using these variables by ANN and linear multivariate regression.Results have shown that by using simple textural characteristics such as mineral content,cement type and void,strength of studied sandstone can be estimated with acceptable accuracy.ANN and multivariate statistical UCS models,revealed responses with 0.87 and 0.76 regressions,respectively which proves higher potential of ANN model for predicting UCS compared to classic statistical models.展开更多
A comprehensive quantification method of fatigue degree is proposed concerning subjective and objective quantifications.Using the fatigue degree test software,fatigue degree is objectively quantified by analyzing the ...A comprehensive quantification method of fatigue degree is proposed concerning subjective and objective quantifications.Using the fatigue degree test software,fatigue degree is objectively quantified by analyzing the reaction and operation abilities of drivers about traffic signals.By comparison experiment with that EEG signal based,multivariate statistical analysis and fusion identification based on BP neural network(BPNN) results show that the experimental procedure is simple and practical,and the proposed method can reveal the correlation between fatigue feature parameters and fatigue degree in theory,and also can achieve accurate and reliable quantification of fatigue degree,especially under the associated action of multiple fatigue feature parameters.展开更多
Porosity is one of the most important properties of oil and gas reservoirs. The porosity data that come from well log are only available at well points. It is necessary to use other method to estimate reservoir porosi...Porosity is one of the most important properties of oil and gas reservoirs. The porosity data that come from well log are only available at well points. It is necessary to use other method to estimate reservoir porosity.Seismic data contain abundant lithological information. Because there are inherent correlations between reservoir property and seismic data,it is possible to estimate reservoir porosity by using seismic data and attributes.Probabilistic neural network is a powerful tool to extract mathematical relation between two data sets. It has been used to extract the mathematical relation between porosity and seismic attributes. Firstly,a seismic impedance volume is calculated by seismic inversion. Secondly,several appropriate seismic attributes are extracted by using multi-regression analysis. Then a probabilistic neural network model is trained to obtain a mathematical relation between porosity and seismic attributes. Finally,this trained probabilistic neural network model is implemented to calculate a porosity data volume. This methodology could be utilized to find advantageous areas at the early stage of exploration. It is also helpful for the establishment of a reservoir model at the stage of reservoir development.展开更多
Bistable behavior of neuronal complex networks is investigated in the limited-sustained-activity regime when the network is composed of excitatory and inhibitory neurons.The standard stability analysis is performed on...Bistable behavior of neuronal complex networks is investigated in the limited-sustained-activity regime when the network is composed of excitatory and inhibitory neurons.The standard stability analysis is performed on the two metastable states separately.Both theoretical analysis and numerical simulations show consistently that the difference between time scales of excitatory and inhibitory populations can influence the dynamical behaviors of the neuronal networks dramatically,leading to the transition from bistable behaviors with memory effects to the collapse of bistable behaviors.These results may suggest one possible neuronal information processing by only tuning time scales.展开更多
基金Project (2006AA06Z132) supported by High-tech Research and Development Program of ChinaProject (B604) supported by Leading Academic Discipline Project of Shanghai
文摘An artificial neural network model was developed to predict the oxidation of refractory gold concentrate (RGC) by ozone and ferric ions. The concentration of ozone and ferric ions, pulp density, oxygen amount, leaching time and temperature were employed as inputs to the network; the output of the network was the percentage of the ferric extraction iron from RGC. The multilayered feed-forward networks were trained by 33 sets of input-output patterns using a back propagation algorithm; a three-layer network with 8 neurons in the hidden layer gave optimal results. The model gave good predictions of high correlation coefficient (R2=0.966). The predictions by ANN are more accurate when compared with conventional multivariate regression analysis (MVRA). In addition, calculation with ANN model indicates that temperature is the predominant parameter and ozone concentration is the lesser influential parameter in the pre-oxidation process of refractory gold ore. The ANN neural network model accurately estimates the ferric extraction during pretreatment process of RGC in gold smelter plants and can be used to optimize the process parameters.
文摘Before any rock engineering project,mechanical parameters of rocks such as uniaxial compressive strength and young modulus of intact rock get measured using laboratory or in-situ tests,but in some situations preparing the required specimens is impossible.By this time,several models have been established to evaluate UCS and E from rock substantial properties.Artificial neural networks are powerful tools which are employed to establish predictive models and results have shown the priority of this technique compared to classic statistical techniques.In this paper,ANN and multivariate statistical models considering rock textural characteristics have been established to estimate UCS of rock and to validate the responses of the established models,they were compared with laboratory results.For this purpose a data set for 44 samples of sandstone was prepared and for each sample some textural characteristics such as void,mineral content and grain size as well as UCS were determined.To select the best predictors as inputs of the UCS models,this data set was subjected to statistical analyses comprising basic descriptive statistics,bivariate correlation,curve fitting and principal component analyses.Results of such analyses have shown that void,ferroan calcitic cement,argillaceous cement and mica percentage have the most effect on USC.Two predictive models for UCS were developed using these variables by ANN and linear multivariate regression.Results have shown that by using simple textural characteristics such as mineral content,cement type and void,strength of studied sandstone can be estimated with acceptable accuracy.ANN and multivariate statistical UCS models,revealed responses with 0.87 and 0.76 regressions,respectively which proves higher potential of ANN model for predicting UCS compared to classic statistical models.
基金Supported by the National Nature Science Foundation of China(No.61304205,61203273,61103086,41301037)the Open Funding Project of State Key Laboratory of Virtual Reality Technology and Systems,Beihang University(No.BUAA-VR-13KF-04)+1 种基金Jiangsu Ordinary University Science Research Project(No.13KJB120007)Innovation and Entrepreneurship Training Project of College Students(No.201410300153,201410300165)
文摘A comprehensive quantification method of fatigue degree is proposed concerning subjective and objective quantifications.Using the fatigue degree test software,fatigue degree is objectively quantified by analyzing the reaction and operation abilities of drivers about traffic signals.By comparison experiment with that EEG signal based,multivariate statistical analysis and fusion identification based on BP neural network(BPNN) results show that the experimental procedure is simple and practical,and the proposed method can reveal the correlation between fatigue feature parameters and fatigue degree in theory,and also can achieve accurate and reliable quantification of fatigue degree,especially under the associated action of multiple fatigue feature parameters.
文摘Porosity is one of the most important properties of oil and gas reservoirs. The porosity data that come from well log are only available at well points. It is necessary to use other method to estimate reservoir porosity.Seismic data contain abundant lithological information. Because there are inherent correlations between reservoir property and seismic data,it is possible to estimate reservoir porosity by using seismic data and attributes.Probabilistic neural network is a powerful tool to extract mathematical relation between two data sets. It has been used to extract the mathematical relation between porosity and seismic attributes. Firstly,a seismic impedance volume is calculated by seismic inversion. Secondly,several appropriate seismic attributes are extracted by using multi-regression analysis. Then a probabilistic neural network model is trained to obtain a mathematical relation between porosity and seismic attributes. Finally,this trained probabilistic neural network model is implemented to calculate a porosity data volume. This methodology could be utilized to find advantageous areas at the early stage of exploration. It is also helpful for the establishment of a reservoir model at the stage of reservoir development.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11105095 and 11005077by the Natural Science Foundation of Higher Education Institutions of Jiangsu Province under Grant No.11KJB140008
文摘Bistable behavior of neuronal complex networks is investigated in the limited-sustained-activity regime when the network is composed of excitatory and inhibitory neurons.The standard stability analysis is performed on the two metastable states separately.Both theoretical analysis and numerical simulations show consistently that the difference between time scales of excitatory and inhibitory populations can influence the dynamical behaviors of the neuronal networks dramatically,leading to the transition from bistable behaviors with memory effects to the collapse of bistable behaviors.These results may suggest one possible neuronal information processing by only tuning time scales.