为加强危险货物道路运输风险源头管控,以危货运输车辆行驶轨迹数据为分析对象,研究安全、经济且符合企业自身偏好的道路运输路径优化选择问题,提出了基于偏好、上下文感知的危险货物道路运输个性化路径推荐方法。首先对危货运输车辆历...为加强危险货物道路运输风险源头管控,以危货运输车辆行驶轨迹数据为分析对象,研究安全、经济且符合企业自身偏好的道路运输路径优化选择问题,提出了基于偏好、上下文感知的危险货物道路运输个性化路径推荐方法。首先对危货运输车辆历史轨迹数据进行处理,通过提取路径安全和经济性特征学习危货运输企业的路径偏好,在此基础上,综合考虑偏好向量间的距离和方向相似性,提出了改进的K-means偏好聚类算法(improved K-means clustering algorithm based on distance and direction similarity measurement,DDM-K-means),获取了路径偏好类别;其次,依据运输任务执行的时间、天气、运距三方面信息,建立了路径上下文向量,并运用Rock聚类算法划分路径的上下文类别,与路径偏好类别共同构成路径信息;最终,基于神经协同过滤提出了危险货物道路运输路径选择优化算法(optimal route selection algorithm based on neural collaborative filtering,NCF-ORS),得到了危货运输企业对各路径类别的偏好排序,从而为企业推荐最优路径。与基线算法比较分析,结果表明危险货物道路运输个性化路径推荐方法<DDM-K-means,NCF-ORS>,平均绝对百分比误差最低。研究结果有助于挖掘车辆轨迹数据中更多的潜在信息,提升个性化路径推荐能力,可为危货运输企业的选线问题提供决策支持。展开更多
文摘为加强危险货物道路运输风险源头管控,以危货运输车辆行驶轨迹数据为分析对象,研究安全、经济且符合企业自身偏好的道路运输路径优化选择问题,提出了基于偏好、上下文感知的危险货物道路运输个性化路径推荐方法。首先对危货运输车辆历史轨迹数据进行处理,通过提取路径安全和经济性特征学习危货运输企业的路径偏好,在此基础上,综合考虑偏好向量间的距离和方向相似性,提出了改进的K-means偏好聚类算法(improved K-means clustering algorithm based on distance and direction similarity measurement,DDM-K-means),获取了路径偏好类别;其次,依据运输任务执行的时间、天气、运距三方面信息,建立了路径上下文向量,并运用Rock聚类算法划分路径的上下文类别,与路径偏好类别共同构成路径信息;最终,基于神经协同过滤提出了危险货物道路运输路径选择优化算法(optimal route selection algorithm based on neural collaborative filtering,NCF-ORS),得到了危货运输企业对各路径类别的偏好排序,从而为企业推荐最优路径。与基线算法比较分析,结果表明危险货物道路运输个性化路径推荐方法<DDM-K-means,NCF-ORS>,平均绝对百分比误差最低。研究结果有助于挖掘车辆轨迹数据中更多的潜在信息,提升个性化路径推荐能力,可为危货运输企业的选线问题提供决策支持。