Texture segmentation is a necessary step to identify the surface or an object in an image. We present a Legendre moment based segmentation algorithm. The Legendre moments in small local windows of the image are comput...Texture segmentation is a necessary step to identify the surface or an object in an image. We present a Legendre moment based segmentation algorithm. The Legendre moments in small local windows of the image are computed first and a nonlinear transducer is used to map the moments to texture features and these features are used to construct feature vectors used as input data. Then an RBF neural network is used to perform segmentation. A k-mean algorithm is used to train the hidden layers of the RBF neural network. The training of the output layer is the supervised algorithm based on LMS. The algorithm has been successfully used to segment a number of gray level texture images. Compared with the geometric moment-based texture segmentation, we can reduce the error rates using orthogonal moments.展开更多
In this paper,we developed a hybrid model for the steam turbines of a utility system,which combines an improved neural network model with the thermodynamic model.Then,a nonlinear programming(NLP) model of the steam tu...In this paper,we developed a hybrid model for the steam turbines of a utility system,which combines an improved neural network model with the thermodynamic model.Then,a nonlinear programming(NLP) model of the steam turbine network is formulated by utilizing the developed steam turbine models to minimize the total steam cost for the whole steam turbine network.Finally,this model is applied to optimize the steam turbine network of an ethylene plant.The obtained results demonstrate that this hybrid model can accurately estimate and evaluate the performance of steam turbines,and the significant cost savings can be made by optimizing the steam turbine network operation at no capital cost.展开更多
The nervous system is composed of a large number of neurons, and the electrical activities of neurons can present multiple modes during the signal transmission between neurons by changing intrinsic bifurcation paramet...The nervous system is composed of a large number of neurons, and the electrical activities of neurons can present multiple modes during the signal transmission between neurons by changing intrinsic bifurcation parameters or under appropriate external forcing. In this review, the dynamics for neuron, neuronal network is introduced, for example, the mode transition in electrical activity, functional role of autapse connection, bifurcation verification in biological experiments, interaction between neuron and astrocyte, noise effect, coherence resonance, pattern formation and selection in network of neurons. Finally, some open problems in this field such as electromagnetic radiation on electrical activities of neuron, energy consumption in neurons are presented.展开更多
Caenorhabditis elegans (C. elegans) is widely adopted as a model organism for a variety of biological studies including development, genetics and neurobiology. Micro-scale microfluidic technology is capable of handlin...Caenorhabditis elegans (C. elegans) is widely adopted as a model organism for a variety of biological studies including development, genetics and neurobiology. Micro-scale microfluidic technology is capable of handling single or populations of C. elegans in high throughput format and allows for the precise spatial and temporal control of their environment, which is well suited for the study of worms in different aspects. In this review, we highlight the recent advances in microfluidic technology for the analysis of worms ranging from behavioral studies to neurobiology. We believe that microfluidic device can further be applied to study the different aspects of worms, extending from fundamental investigation of behavioral dynamics to more complicated biological processes including neurochemistry and learning behaviors.展开更多
The brain of the domestic pig(Sus scrofa domesticus)has drawn considerable attention due to its high similarities to that of humans.However,the cellular compositions of the pig brain(PB)remain elusive.Here we investig...The brain of the domestic pig(Sus scrofa domesticus)has drawn considerable attention due to its high similarities to that of humans.However,the cellular compositions of the pig brain(PB)remain elusive.Here we investigated the single-nucleus transcriptomic profiles of five regions of the PB(frontal lobe,parietal lobe,temporal lobe,occipital lobe,and hypothalamus)and identified 21 cell subpopulations.The cross-species comparison of mouse and pig hypothalamus revealed the shared and specific gene expression patterns at the single-cell resolution.Furthermore,we identified cell types and molecular pathways closely associated with neurological disorders,bridging the gap between gene mutations and pathogenesis.We reported,to our knowledge,the first single-cell atlas of domestic pig cerebral cortex and hypothalamus combined with a comprehensive analysis across species,providing extensive resources for future research regarding neural science,evolutionary developmental biology,and regenerative medicine.展开更多
基金The National Natural Science Foundation of China (60272045).
文摘Texture segmentation is a necessary step to identify the surface or an object in an image. We present a Legendre moment based segmentation algorithm. The Legendre moments in small local windows of the image are computed first and a nonlinear transducer is used to map the moments to texture features and these features are used to construct feature vectors used as input data. Then an RBF neural network is used to perform segmentation. A k-mean algorithm is used to train the hidden layers of the RBF neural network. The training of the output layer is the supervised algorithm based on LMS. The algorithm has been successfully used to segment a number of gray level texture images. Compared with the geometric moment-based texture segmentation, we can reduce the error rates using orthogonal moments.
基金Supported by the Major State Basic Research Development Program of China(2012CB720500)the National Natural Science Foundation of China(U1162202),the National Natural Science Foundation of China(21276078,61174118,21206037)the National Science Fund for Outstanding Young Scholars(61222303)
文摘In this paper,we developed a hybrid model for the steam turbines of a utility system,which combines an improved neural network model with the thermodynamic model.Then,a nonlinear programming(NLP) model of the steam turbine network is formulated by utilizing the developed steam turbine models to minimize the total steam cost for the whole steam turbine network.Finally,this model is applied to optimize the steam turbine network of an ethylene plant.The obtained results demonstrate that this hybrid model can accurately estimate and evaluate the performance of steam turbines,and the significant cost savings can be made by optimizing the steam turbine network operation at no capital cost.
基金supported by the National Natural Science Foundation of China(Grant Nos.11265008 and 11365014)
文摘The nervous system is composed of a large number of neurons, and the electrical activities of neurons can present multiple modes during the signal transmission between neurons by changing intrinsic bifurcation parameters or under appropriate external forcing. In this review, the dynamics for neuron, neuronal network is introduced, for example, the mode transition in electrical activity, functional role of autapse connection, bifurcation verification in biological experiments, interaction between neuron and astrocyte, noise effect, coherence resonance, pattern formation and selection in network of neurons. Finally, some open problems in this field such as electromagnetic radiation on electrical activities of neuron, energy consumption in neurons are presented.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-H18)Instrument Research and Development Program of the Chinese Academy of Sciences (YZ200908)the National Natural Science Foundation of China (11161160552)
文摘Caenorhabditis elegans (C. elegans) is widely adopted as a model organism for a variety of biological studies including development, genetics and neurobiology. Micro-scale microfluidic technology is capable of handling single or populations of C. elegans in high throughput format and allows for the precise spatial and temporal control of their environment, which is well suited for the study of worms in different aspects. In this review, we highlight the recent advances in microfluidic technology for the analysis of worms ranging from behavioral studies to neurobiology. We believe that microfluidic device can further be applied to study the different aspects of worms, extending from fundamental investigation of behavioral dynamics to more complicated biological processes including neurochemistry and learning behaviors.
基金the China Postdoctoral Science Foundation(2017M622795)the Science,Technology and Innovation Commission of Shenzhen Municipality(JCYJ20180507183628543)the Fundamental Research Funds for the Central Universities(2662018PY025 and 2662017PY105)。
文摘The brain of the domestic pig(Sus scrofa domesticus)has drawn considerable attention due to its high similarities to that of humans.However,the cellular compositions of the pig brain(PB)remain elusive.Here we investigated the single-nucleus transcriptomic profiles of five regions of the PB(frontal lobe,parietal lobe,temporal lobe,occipital lobe,and hypothalamus)and identified 21 cell subpopulations.The cross-species comparison of mouse and pig hypothalamus revealed the shared and specific gene expression patterns at the single-cell resolution.Furthermore,we identified cell types and molecular pathways closely associated with neurological disorders,bridging the gap between gene mutations and pathogenesis.We reported,to our knowledge,the first single-cell atlas of domestic pig cerebral cortex and hypothalamus combined with a comprehensive analysis across species,providing extensive resources for future research regarding neural science,evolutionary developmental biology,and regenerative medicine.