期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于自适应神经模糊推理算法的无人机电推进燃料电池供气系统性能优化 被引量:6
1
作者 李勇 韩非非 张昕喆 《推进技术》 EI CAS CSCD 北大核心 2021年第6期1395-1409,共15页
针对无人机采用的聚合物交换膜燃料电池和锂离子电池的混合动力电推进系统,研究开发了一种基于自适应神经模糊推理系统的电源管理控制技术,以控制混合动力电推进系统,同时优化燃料电池供气系统的性能。用无人机混合电推进系统数学模型,... 针对无人机采用的聚合物交换膜燃料电池和锂离子电池的混合动力电推进系统,研究开发了一种基于自适应神经模糊推理系统的电源管理控制技术,以控制混合动力电推进系统,同时优化燃料电池供气系统的性能。用无人机混合电推进系统数学模型,研究了燃料电池电流与燃料电池供气系统压缩机功率之间的关系,建立了燃料电池电流与最佳压缩机功率关系的参考模型。在参考模型的基础上,引入自适应控制器来优化燃料电池供气系统的性能。基于自适应神经模糊推理系统的控制器将压缩机的实际运行功率动态调整到参考模型中定义的最佳值。自适应控制器的在线学习和训练能力用来辨识燃料电池电流的非线性变化,并产生压缩机电机电压的控制信号,以优化燃料电池供气系统的性能。在Matlab仿真环境中,开发了质子交换膜燃料电池和锂离子混合动力电推进系统模型,并对所设计的控制器进行了仿真分析。结果表明,基于自适应神经模糊推理系统的控制器为燃料电池供气系统压缩机性能优化提供了一种新颖而全面的途径,使燃料电池供气系统获得最大净功率输出。将燃料电池系统的净功率输出与最佳压缩机功率和恒定压缩机功率进行比较,发现优化的压缩机功率配置比恒定的压缩机功率配置节能2.62%。同时,燃料电池自适应神经模糊推理系统控制器优化了燃料电池供气系统的能量利用。 展开更多
关键词 无人机 自适应控制器 神经模糊推理算法 电推进 燃料电池 供气系统 性能优化
下载PDF
基于特征筛选与ANFIS-PSO的分布式光伏发电功率预测方法研究 被引量:15
2
作者 时珉 王强 +4 位作者 王铁强 王一峰 尹瑞 何琰 Yordanos Kassa Semero 《可再生能源》 CAS 北大核心 2019年第7期989-994,共6页
短期分布式光伏发电功率预测对配电网调度计划的安排及优化具有重要意义。人工智能技术的进步为精细化分析光伏发电功率预测结果的影响因素以及提高光伏发电功率的预测精度提供了有效途径。文章提出一种基于特征筛选与ANFIS-PSO的分布... 短期分布式光伏发电功率预测对配电网调度计划的安排及优化具有重要意义。人工智能技术的进步为精细化分析光伏发电功率预测结果的影响因素以及提高光伏发电功率的预测精度提供了有效途径。文章提出一种基于特征筛选与ANFIS-PSO的分布式光伏发电功率预测方法。首先,基于随机森林中的增益情况,对影响分布式光伏发电系统的各项特征参数进行筛选;然后,通过自适应神经模糊推理算法对输入数据进行训练,并使用粒子群算法对ANFIS模型进行优化;接着,建立基于离线训练和在线预测的ANFIS-PSO分布式光伏发电功率预测模型;最后,利用北京某地分布式光伏发电系统的实际数据来验证模拟结果的准确性。 展开更多
关键词 分布式光伏发电系统 发电功率预测 特征筛选 自适应神经模糊推理算法 粒子群算法
下载PDF
Modeling of shear wave velocity in limestone by soft computing methods 被引量:2
3
作者 Behnia Danial Ahangari Kaveh Moeinossadat Sayed Rahim 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第3期423-430,共8页
The main purpose of current study is development of an intelligent model for estimation of shear wave velocity in limestone. Shear wave velocity is one of the most important rock dynamic parameters. Because rocks have... The main purpose of current study is development of an intelligent model for estimation of shear wave velocity in limestone. Shear wave velocity is one of the most important rock dynamic parameters. Because rocks have complicated structure, direct determination of this parameter takes time, spends expenditure and requires accuracy. On the other hand, there are no precise equations for indirect determination of it; most of them are empirical. By using data sets of several dams of Iran and neuro-genetic, adaptive neuro-fuzzy inference system (ANFIS), and gene expression programming (GEP) methods, models are rendered for prediction of shear wave velocity in limestone. Totally, 516 sets of data has been used for modeling. From these data sets, 413 ones have been utilized for building the intelligent model, and 103 have been used for their performance evaluation. Compressional wave velocity (Vp), density (7) and porosity (.n), were considered as input parameters. Respectively, the amount of R for neuro-genetic and ANFIS networks was 0.959 and 0.963. In addition, by using GEP, three equations are obtained; the best of them has 0.958R. ANFIS shows the best prediction results, whereas GEP indicates proper equations. Because these equations have accuracy, they could be used for prediction of shear wave velocity for limestone in the future. 展开更多
关键词 Shear wave velocity Limestone Neuro-genetic Adaptive neuro-fuzzy inference system Gene expression programming
下载PDF
Element yield rate prediction in ladle furnace based on improved GA-ANFIS 被引量:3
4
作者 徐喆 毛志忠 《Journal of Central South University》 SCIE EI CAS 2012年第9期2520-2527,共8页
The traditional prediction methods of element yield rate can be divided into experience method and data-driven method.But in practice,the experience formulae are found to work only under some specific conditions,and t... The traditional prediction methods of element yield rate can be divided into experience method and data-driven method.But in practice,the experience formulae are found to work only under some specific conditions,and the sample data that are used to establish data-driven models are always insufficient.Aiming at this problem,a combined method of genetic algorithm(GA) and adaptive neuro-fuzzy inference system(ANFIS) is proposed and applied to element yield rate prediction in ladle furnace(LF).In order to get rid of the over reliance upon data in data-driven method and act as a supplement of inadequate samples,smelting experience is integrated into prediction model as fuzzy empirical rules by using the improved ANFIS method.For facilitating the combination of fuzzy rules,feature construction method based on GA is used to reduce input dimension,and the selection operation in GA is improved to speed up the convergence rate and to avoid trapping into local optima.The experimental and practical testing results show that the proposed method is more accurate than other prediction methods. 展开更多
关键词 genetic algorithm adaptive neuro-fuzzy inference system ladle furnace element yield rate PREDICTION
下载PDF
A NEURAL FUZZY INFERENCE SYSTEM
5
作者 Lu Jing 《Journal of Electronics(China)》 2013年第4期401-410,共10页
This paper proposes a new neural fuzzy inference system that mainly consists of four parts. The first part is about how to use neural network to express the relation within a fuzzy rule. The second part is the simplif... This paper proposes a new neural fuzzy inference system that mainly consists of four parts. The first part is about how to use neural network to express the relation within a fuzzy rule. The second part is the simplification of the first part, and experiments show that these simplifications work. On the contrary to the second part, the third part is the enhancement of the first part and it can be used when the first part cannot work very well in the fuzzy inference algorithm, which would be introduced in the fourth part. Finally, the fourth part "neural fuzzy inference algorithm" is been introduced. It can inference the new membership function of the output based on previous fuzzy rules. The accuracy of the fuzzy inference algorithm is dependent on neural network generalization ability. Even if the generalization ability of the neural network we used is good, we still get inaccurate results since the new coming rule may not be related to any of the previous rules. Experiments show this algorithm is successful in situations which satisfy these conditions. 展开更多
关键词 Fuzzy logic Neural network Relation within fuzzy rule . Graph solution
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部