The main purpose of current study is development of an intelligent model for estimation of shear wave velocity in limestone. Shear wave velocity is one of the most important rock dynamic parameters. Because rocks have...The main purpose of current study is development of an intelligent model for estimation of shear wave velocity in limestone. Shear wave velocity is one of the most important rock dynamic parameters. Because rocks have complicated structure, direct determination of this parameter takes time, spends expenditure and requires accuracy. On the other hand, there are no precise equations for indirect determination of it; most of them are empirical. By using data sets of several dams of Iran and neuro-genetic, adaptive neuro-fuzzy inference system (ANFIS), and gene expression programming (GEP) methods, models are rendered for prediction of shear wave velocity in limestone. Totally, 516 sets of data has been used for modeling. From these data sets, 413 ones have been utilized for building the intelligent model, and 103 have been used for their performance evaluation. Compressional wave velocity (Vp), density (7) and porosity (.n), were considered as input parameters. Respectively, the amount of R for neuro-genetic and ANFIS networks was 0.959 and 0.963. In addition, by using GEP, three equations are obtained; the best of them has 0.958R. ANFIS shows the best prediction results, whereas GEP indicates proper equations. Because these equations have accuracy, they could be used for prediction of shear wave velocity for limestone in the future.展开更多
The traditional prediction methods of element yield rate can be divided into experience method and data-driven method.But in practice,the experience formulae are found to work only under some specific conditions,and t...The traditional prediction methods of element yield rate can be divided into experience method and data-driven method.But in practice,the experience formulae are found to work only under some specific conditions,and the sample data that are used to establish data-driven models are always insufficient.Aiming at this problem,a combined method of genetic algorithm(GA) and adaptive neuro-fuzzy inference system(ANFIS) is proposed and applied to element yield rate prediction in ladle furnace(LF).In order to get rid of the over reliance upon data in data-driven method and act as a supplement of inadequate samples,smelting experience is integrated into prediction model as fuzzy empirical rules by using the improved ANFIS method.For facilitating the combination of fuzzy rules,feature construction method based on GA is used to reduce input dimension,and the selection operation in GA is improved to speed up the convergence rate and to avoid trapping into local optima.The experimental and practical testing results show that the proposed method is more accurate than other prediction methods.展开更多
This paper proposes a new neural fuzzy inference system that mainly consists of four parts. The first part is about how to use neural network to express the relation within a fuzzy rule. The second part is the simplif...This paper proposes a new neural fuzzy inference system that mainly consists of four parts. The first part is about how to use neural network to express the relation within a fuzzy rule. The second part is the simplification of the first part, and experiments show that these simplifications work. On the contrary to the second part, the third part is the enhancement of the first part and it can be used when the first part cannot work very well in the fuzzy inference algorithm, which would be introduced in the fourth part. Finally, the fourth part "neural fuzzy inference algorithm" is been introduced. It can inference the new membership function of the output based on previous fuzzy rules. The accuracy of the fuzzy inference algorithm is dependent on neural network generalization ability. Even if the generalization ability of the neural network we used is good, we still get inaccurate results since the new coming rule may not be related to any of the previous rules. Experiments show this algorithm is successful in situations which satisfy these conditions.展开更多
文摘The main purpose of current study is development of an intelligent model for estimation of shear wave velocity in limestone. Shear wave velocity is one of the most important rock dynamic parameters. Because rocks have complicated structure, direct determination of this parameter takes time, spends expenditure and requires accuracy. On the other hand, there are no precise equations for indirect determination of it; most of them are empirical. By using data sets of several dams of Iran and neuro-genetic, adaptive neuro-fuzzy inference system (ANFIS), and gene expression programming (GEP) methods, models are rendered for prediction of shear wave velocity in limestone. Totally, 516 sets of data has been used for modeling. From these data sets, 413 ones have been utilized for building the intelligent model, and 103 have been used for their performance evaluation. Compressional wave velocity (Vp), density (7) and porosity (.n), were considered as input parameters. Respectively, the amount of R for neuro-genetic and ANFIS networks was 0.959 and 0.963. In addition, by using GEP, three equations are obtained; the best of them has 0.958R. ANFIS shows the best prediction results, whereas GEP indicates proper equations. Because these equations have accuracy, they could be used for prediction of shear wave velocity for limestone in the future.
基金Projects(2007AA041401,2007AA04Z194) supported by the National High Technology Research and Development Program of China
文摘The traditional prediction methods of element yield rate can be divided into experience method and data-driven method.But in practice,the experience formulae are found to work only under some specific conditions,and the sample data that are used to establish data-driven models are always insufficient.Aiming at this problem,a combined method of genetic algorithm(GA) and adaptive neuro-fuzzy inference system(ANFIS) is proposed and applied to element yield rate prediction in ladle furnace(LF).In order to get rid of the over reliance upon data in data-driven method and act as a supplement of inadequate samples,smelting experience is integrated into prediction model as fuzzy empirical rules by using the improved ANFIS method.For facilitating the combination of fuzzy rules,feature construction method based on GA is used to reduce input dimension,and the selection operation in GA is improved to speed up the convergence rate and to avoid trapping into local optima.The experimental and practical testing results show that the proposed method is more accurate than other prediction methods.
文摘This paper proposes a new neural fuzzy inference system that mainly consists of four parts. The first part is about how to use neural network to express the relation within a fuzzy rule. The second part is the simplification of the first part, and experiments show that these simplifications work. On the contrary to the second part, the third part is the enhancement of the first part and it can be used when the first part cannot work very well in the fuzzy inference algorithm, which would be introduced in the fourth part. Finally, the fourth part "neural fuzzy inference algorithm" is been introduced. It can inference the new membership function of the output based on previous fuzzy rules. The accuracy of the fuzzy inference algorithm is dependent on neural network generalization ability. Even if the generalization ability of the neural network we used is good, we still get inaccurate results since the new coming rule may not be related to any of the previous rules. Experiments show this algorithm is successful in situations which satisfy these conditions.