The proposed controller incorporates FL (fuzzy logic) algorithm with ANN (artificial neural network). ANFIS replaces the conventional PI controller, tuning the fuzzy inference system with a hybrid learning algorit...The proposed controller incorporates FL (fuzzy logic) algorithm with ANN (artificial neural network). ANFIS replaces the conventional PI controller, tuning the fuzzy inference system with a hybrid learning algorithm. A tuning method is proposed for training of the neuro-fuzzy controller. The best rule base and the best training algorithm chosen produced high performance in the ANFIS controller. Simulation was done on Matlab Ver. 2010a. A case study was chopper-fed DC motor drive, in continuous and discrete modes. Satisfactory results show the ANFIS controller is able to control dynamic highly-nonlinear systems. Tuning it further improved the results.展开更多
The control of heat exchange stations in district heating system is critical for the overall energy efficiency and can be very difficult due to high level of complexity. A conventional method is to control the equipme...The control of heat exchange stations in district heating system is critical for the overall energy efficiency and can be very difficult due to high level of complexity. A conventional method is to control the equipment such that the temperature of hot water supply is maintained at a set-point that may be a fixed value or be compensated against the external temperature. This paper presents a novel scheme that can determine the optimal set-point of hot water supply that maximizes the energy efficiency whilst providing sufficient heating capacity to the load. This scheme is based on Adaptive Neuro-Fuzzy Inferential System. The aim of this study is to improve the overall performance of district heating systems.展开更多
文摘The proposed controller incorporates FL (fuzzy logic) algorithm with ANN (artificial neural network). ANFIS replaces the conventional PI controller, tuning the fuzzy inference system with a hybrid learning algorithm. A tuning method is proposed for training of the neuro-fuzzy controller. The best rule base and the best training algorithm chosen produced high performance in the ANFIS controller. Simulation was done on Matlab Ver. 2010a. A case study was chopper-fed DC motor drive, in continuous and discrete modes. Satisfactory results show the ANFIS controller is able to control dynamic highly-nonlinear systems. Tuning it further improved the results.
文摘The control of heat exchange stations in district heating system is critical for the overall energy efficiency and can be very difficult due to high level of complexity. A conventional method is to control the equipment such that the temperature of hot water supply is maintained at a set-point that may be a fixed value or be compensated against the external temperature. This paper presents a novel scheme that can determine the optimal set-point of hot water supply that maximizes the energy efficiency whilst providing sufficient heating capacity to the load. This scheme is based on Adaptive Neuro-Fuzzy Inferential System. The aim of this study is to improve the overall performance of district heating systems.