The state-space neural network and extended Kalman filter model is used to directly predict the optimal timing plan that corresponds to futuristic traffic conditions in real time with the purposes of avoiding the lagg...The state-space neural network and extended Kalman filter model is used to directly predict the optimal timing plan that corresponds to futuristic traffic conditions in real time with the purposes of avoiding the lagging of the signal timing plans to traffic conditions. Utilizing the traffic conditions in current and former intervals, the network topology of the state-space neural network (SSNN), which is derived from the geometry of urban arterial routes, is used to predict the optimal timing plan corresponding to the traffic conditions in the next time interval. In order to improve the effectiveness of the SSNN, the extended Kalman filter (EKF) is proposed to train the SSNN instead of conventional approaches. Raw traffic data of the Guangzhou Road, Nanjing and the optimal signal timing plan generated by a multi-objective optimization genetic algorithm are applied to test the performance of the proposed model. The results indicate that compared with the SSNN and the BP neural network, the proposed model can closely match the optimal timing plans in futuristic states with higher efficiency.展开更多
The chaotic nonlinear time series method is applied to analyze the sliver irregularity in textile processing.Because it unifies the system's determinacy and randomness,it seems more adaptive to describe the sliver...The chaotic nonlinear time series method is applied to analyze the sliver irregularity in textile processing.Because it unifies the system's determinacy and randomness,it seems more adaptive to describe the sliver irregularity than conventional methods.Firstly,the chaos character,i.e.fractal dimension,positive Lyapunov exponent,and state space parameters,including time delay and reconstruction dimension,are calculated respectively.As a result,a positive Lyapunov exponent and a fractal dimension are obtained,which demonstrates that the system is chaotic in fact.Secondly,both local linear forecast and global forecast models based on the reconstructed state are adopted to predict a segment part of the sliver irregularity series,which proves the validity of this analysis.Therefore,the sliver irregularity series shows the evidence of chaotic phenomena,and thus laying the theoretical foundation for analyzing and modeling the sliver irregularity series by applying the chaos theory,and providing a new way to understand the complexity of the sliver irregularity much better.展开更多
基金The National Natural Science Foundation of China (No.50422283)the Soft Science Research Project of Ministry of Housing and Urban-Rural Development of China (No.2008-K5-14)
文摘The state-space neural network and extended Kalman filter model is used to directly predict the optimal timing plan that corresponds to futuristic traffic conditions in real time with the purposes of avoiding the lagging of the signal timing plans to traffic conditions. Utilizing the traffic conditions in current and former intervals, the network topology of the state-space neural network (SSNN), which is derived from the geometry of urban arterial routes, is used to predict the optimal timing plan corresponding to the traffic conditions in the next time interval. In order to improve the effectiveness of the SSNN, the extended Kalman filter (EKF) is proposed to train the SSNN instead of conventional approaches. Raw traffic data of the Guangzhou Road, Nanjing and the optimal signal timing plan generated by a multi-objective optimization genetic algorithm are applied to test the performance of the proposed model. The results indicate that compared with the SSNN and the BP neural network, the proposed model can closely match the optimal timing plans in futuristic states with higher efficiency.
文摘The chaotic nonlinear time series method is applied to analyze the sliver irregularity in textile processing.Because it unifies the system's determinacy and randomness,it seems more adaptive to describe the sliver irregularity than conventional methods.Firstly,the chaos character,i.e.fractal dimension,positive Lyapunov exponent,and state space parameters,including time delay and reconstruction dimension,are calculated respectively.As a result,a positive Lyapunov exponent and a fractal dimension are obtained,which demonstrates that the system is chaotic in fact.Secondly,both local linear forecast and global forecast models based on the reconstructed state are adopted to predict a segment part of the sliver irregularity series,which proves the validity of this analysis.Therefore,the sliver irregularity series shows the evidence of chaotic phenomena,and thus laying the theoretical foundation for analyzing and modeling the sliver irregularity series by applying the chaos theory,and providing a new way to understand the complexity of the sliver irregularity much better.