Objective:Inflammation in the central nervous system plays a crucial role in the occurrence and development of sepsis-associated encephalopathy.This study aims to explore the effects of maresin 1(MaR1),an anti-inflamm...Objective:Inflammation in the central nervous system plays a crucial role in the occurrence and development of sepsis-associated encephalopathy.This study aims to explore the effects of maresin 1(MaR1),an anti-inflammatory and pro-resolving lipid mediator,on sepsis-induced neuroinflammation and cognitive impairment.Methods:Mice were randomly assigned to 4 groups:A sham group(sham operation+vehicle),a cecal ligation and puncture(CLP)group(CLP operation+vehicle),a MaR1-LD group(CLP operation+1 ng MaR1),and a MaR1-HD group(CLP operation+10 ng MaR1).MaR1 or vehicle was intraperitoneally administered starting 1 h before CLP operation,then every other day for 7 days.Survival rates were monitored,and serum inflammatory cytokines[tumor necrosis factor alpha(TNF-α),interleukin(IL)-1β,and IL-6]were measured 24 h after operation using enzyme-linked immunosorbent assay(ELISA).Cognitive function was assessed 7 days after operation using the Morris water maze(MWM)test and novel object recognition(NOR)task.The mRNA expression of TNF-α,IL-1β,IL-6,inducible nitric oxide synthase(iNOS),IL-4,IL-10,and arginase 1(Arg1)in cortical and hippocampal tissues was determined by real-time reverse transcription PCR(RT-PCR).Western blotting was used to determine the protein expression of iNOS,Arg1,signal transducer and activator of transcription 6(STAT6),peroxisome proliferator-activated receptor gamma(PPARγ),and phosphorylated STAT6(p-STAT6)in hippocampal tissue.Microglia activation was visualized via immunofluorescence.Mice were also treated with the PPARγantagonist GW9662 to confirm the involvement of this pathway in MaR1’s effects.Results:CLP increased serum levels of TNF-α,IL-1β,and IL-6,and reduced body weight and survival rates(all P<0.05).Both 1 ng and 10 ng doses of MaR1 significantly reduced serum TNF-α,IL-1β,and IL-6 levels,improved body weight,and increased survival rates(all P<0.05).No significant difference in efficacy was observed between the 2 doses(all P>0.05).MWM test and NOR task indicated that CLP impaired spatial learning,which MaR1 mitigated.However,GW9662 partially reversed MaR1’s protective effects.Real-time RTPCR results demonstrated that,compared to the sham group,mRNA expression of TNF-α,IL-1β,and iNOS significantly increased in hippocampal tissues following CLP(all P<0.05),while IL-4,IL-10,and Arg1 showed a slight decrease,though the differences were not statistically significant(all P>0.05).Compared to the CLP group,both 1 ng and 10 ng MaR1 decreased TNF-α,IL-1β,and iNOS mRNA expression in hippocampal tissues and increased IL-4,IL-10,and Arg1 mRNA expression(all P<0.05).Immunofluorescence results indicated a significant increase in Iba1-positive microglia in the hippocampus after CLP compared to the sham group(P<0.05).Administration of 1 ng and 10 ng MaR1 reduced the percentage area of Iba1-positive cells in the hippocampus compared to the CLP group(both P<0.05).Western blotting results showed that,compared to the CLP group,both 1 ng and 10 ng MaR1 down-regulated the iNOS expression,while up-regulated the expression of Arg1,PPARγ,and p-STAT6(all P<0.05).However,the inclusion of GW9662 counteracted the MaR1-induced upregulation of Arg1 and PPARγcompared to the MaR1-LD group(all P<0.05).Conclusion:MaR1 inhibits the classical activation of hippocampal microglia,promotes alternative activation,reduces sepsis-induced neuroinflammation,and improves cognitive decline.展开更多
Objective Neuroinflammation with microglial activation has been implicated to have a strong association with the progressive dopaminergic neuronal loss in Parkinson's disease (PD). The present study was undertaken ...Objective Neuroinflammation with microglial activation has been implicated to have a strong association with the progressive dopaminergic neuronal loss in Parkinson's disease (PD). The present study was undertaken to evaluate the activation profile of microglia in 1-methyl-4-phenyl pyridinium (MPP^+)-induced hemiparkinsonian rats. Triptolide, a potent immunosuppressant and microglia inhibitor, was then examined for its efficacy in protecting dopaminergic neurons from injury and ameliorating behavioral disabilities induced by MPP^+. Methods The rat model of PD was established by intranigral microinjection of MPP^+. At baseline and on day 1, 3, 7, 14, 21 following MPP^+ injection, the degree of microglial activation was examined by detecting the immunodensity of OX-42 (microglia marker) in the substantia nigra (SN). The number of viable dopaminergic neurons was determined by measuring tyrosine hydroxylase (TH) positive neurons in the SN. Behavioral performances were evaluated by counting the number of rotations induced by apomorphine, calculating scores of forelimb akinesia and vibrissae-elicited forelimb placing asymmetry. Results Intranigral injection of MPP^+ resulted in robust activa- tion of microglia, progressive depletion of dopaminergic neurons, and ongoing aggravation of behavioral disabilities in rats. Triptolide significantly inhibited microglial activation, partially prevented dopaminergic cells from death and improved behavioral performances. Conclusion These data demonstrated for the first time a neuroprotective effect of triptolide on dopaminergic neurons in MPP^+ induced hemiparkinsonian rats. The protective effect of triptolide may, at least partially, be related to the inhibition of MPP^+-induced microglial activation. Our results lend strong support to the use of immunosuppressive agents in the management of PD.展开更多
Objective To investigate the cell proliferation and differentiation in the developing brain of mouse. Methods C57/BL6 mice were divided into 3 groups at random. Bromodeoxyuridine (BrdU) was injected into the brains ...Objective To investigate the cell proliferation and differentiation in the developing brain of mouse. Methods C57/BL6 mice were divided into 3 groups at random. Bromodeoxyuridine (BrdU) was injected into the brains in different development periods once a day for 7 d. The brains were retrieved 4 weeks after the last BrdU injection. Immunohistochemical and immunofluorescent studies were carried out for detecting cell proliferation (BrdU) and cell differentiation (NeuN, APC, lbal, and S 100β), respectively. Results The number of BrdU labeled cells decreased significantly with the development of the brain. Cell proliferation was prominent in the cortex and striatum. A small portion of BrdU and NeuN double labeled cells could be detected in the cortex at the early stage of development, and in the striatum and CA of the hippocampus in all groups. The majority of BrdU labeled cells were neuroglia, and the number of neuroglia cells decreased dramatically with brain maturation. Neurogenesis is the major cytogenesis in the dentate gyrus. Conclusion These results demonstrated that cell proliferation, differentiation and survival were age and brain region related.展开更多
Objective To evaluate the role of thrombin-activated microglia in the neurodegeneration of nigral dopaminergic neurons in the rat substantia nigra (SN) in vivo. Methods After stereotaxic thrombin injection into unil...Objective To evaluate the role of thrombin-activated microglia in the neurodegeneration of nigral dopaminergic neurons in the rat substantia nigra (SN) in vivo. Methods After stereotaxic thrombin injection into unilateral SN of rats, immunostaining, reverse transcription polymerase chain reaction (RT-PCR) and biochemical methods were used to observe tyrosine hydroxylase (TH) irnmunoreactive positive cells, microglia activation, nitric oxide (NO) amount and inducible nitricoxide synthase (iNOS) expression. Results (1) Selective damage to dopaminergic neurons was produced after thrombin injection, which was evidenced by loss of TH imrnunostaining in time-dependent manner; (2) Strong microglial activation was observed in the SN; (3) RT-PCR demonstrated the early and transient expression of neurotoxic factors iNOS mRNA in the SN. Immunofluorescence results found that thrombin induced expression of iNOS in microglia. The NO production in the thrombininjected rats was significantly higher than that of controls (P 〈 0.05). Conclusion Thrombin intranigral injection can injure the dopaminergic neurons in the SN. Thrombin-induced microglia activation precedes dopaminergic neuron degeneration, which suggest that activation of microglia and release of NO may play important roles in dopaminergic neuronal death in the SN.展开更多
Objective To investigate the expression of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) in monkeys of resuscitation after selective cerebral ultraprofound hypothermia and blood ...Objective To investigate the expression of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) in monkeys of resuscitation after selective cerebral ultraprofound hypothermia and blood flow occlusion. Methods The monkeys were immediately removed brain after death in operation of group A (identical temperature perfusion group) and group B (ultraprofound hypothermia perfusion group). Immunohistochemical technique was used to determine frontal cellular expression of NGF and GDNF. Statistics were analyzed by ANOVA analyses with significance level at P 〈 0.05. Results The expressions of NGF and GDNF in the group B were significantly higher than those in the group A (P 〈 0.05). Conclusion NGF and GDNF increased significantly in the monkeys of resuscitation after selective cerebral ultraprofound hypothermia and blood flow occlusion. It may be a protective mechanism for neuron survival and neural function recovery.展开更多
Objective To construct recombinant lentiviral vectors for gene delivery of the glial cell line-derived neurotropnic factor (GDNF), and evaluate the neuroprotective effect of GDNF on lactacystin-damaged PC12 cells by...Objective To construct recombinant lentiviral vectors for gene delivery of the glial cell line-derived neurotropnic factor (GDNF), and evaluate the neuroprotective effect of GDNF on lactacystin-damaged PC12 cells by transfecting it into bone marrow stromal cells (BMSCs). Methods pLenti6/V5-GDNF plasmid was set up by double restriction enzyme digestion and ligation, and then the plasmid was transformed into Top10 cells. Purified pLenti6/V5-GDNF plasmids from the positive clones and the packaging mixture were cotransfected to the 293FT packaging cell line by Lipofectamine2000 to produce lentivirus, then the concentrated virus was transduced to BMSCs. Overexpression of GDNF in BMSCs was tested by RT-PCR, ELISA and immunocytochemistry, and its neuroprotection for lactacystin-damaged PC12 cells was evaluated by MTT assay. Results Virus stock of GDNF was harvested with the titer of 5.6×10^5 TU/mL. After tmnsduction, GDNF-BMSCs successfully secreted GDNF to supematant with nigher concentration (800 pg/mL) than BMSCs did (less than 100 pg/mL). The supematant of GDNF-BMSCs could significantly alleviate the damage of PC12 cells induced by lactacystin (10 μmol/L). Conclusion Overexpression of lentivirus-mediated GDNF in the BMSCs cells can effectively protect PC12 cells from the injury by the proteasome inhibitor.展开更多
Objective: To observe the relationship between non-small cell lung cancer with neuroendrocrine differentiation (NSCLC-NE) and patients' postoperative survival. Methods: During April 1997 to April 1999, 98 cases o...Objective: To observe the relationship between non-small cell lung cancer with neuroendrocrine differentiation (NSCLC-NE) and patients' postoperative survival. Methods: During April 1997 to April 1999, 98 cases of hlng cancer were surgically treated. The tumor specimens of the patients were stained by NE markers, i.e. neuron specific enolase (NSE) and synaptophysin (SY). The intensity of NE markers reaction was divided as "+". "++". "+++" scale groups. The same specimens were also examined under an electron microscope for the specific neuroendocrine granules. All enrolled patients were followed up for 36 months, and the longest follow-up time was 60 months. The COX proportional hazard model multivariate analysis was applied to observe the relationship between the NSCLE-NE and the patients' postoperative survival. Results: In 91 cases of NSCLC, 63.7% (58/91) were positive for NE stain reaction. Among them, 59.3% (54/91) were positive for NSE and 24.1% (22/91) for SY. 48.4% (44/91) were considered as NSCLC-NE by the combination of NE inarker stain reaction and electron microscopic examination. COX proportional hazard model lnnltivariate analysis showed that the NSCLC-NE patients' survival was significantly shortened (P=0.048). The following factors were related to NSCLC-NE patients' survival: lung cancer cell differentiation (P=0.006), clinical lung cancer stage (P=0.001), the NE markers reaction (P=0.054). Conclusion: NSCLE-NE is significantly related to the cancer cell differentiation and the patients' postoperative survival. The NE markers should be applied clinically as one of prognostic factors to evaluate the postoperative survival of NSCLC patients.展开更多
Objective To observe the activating effect of ciliary neurotrophic factor (CNTF) on astrocyte in vitro. Methods Astrocytes cultured purely from newborn rats. Cerebral cortex was raised in normal and serum deprivatio...Objective To observe the activating effect of ciliary neurotrophic factor (CNTF) on astrocyte in vitro. Methods Astrocytes cultured purely from newborn rats. Cerebral cortex was raised in normal and serum deprivation condition with different concentrations (in ng/ml: 0, 2, 20, or 200) of CNTF. After cultured for 24 h, the shape and the cell cycle of astrocytes were examined by immunocytochemistry and flow cytometer, respectively. Results The immunoactivity of glial fibrillary acidic protein (GFAP) and the nuclear size of astrocytes were increased when CNTF was applied, whether cells were cultured in medium with or without serum. CNTF promoted astrocytes to enter the cell cycle in medium with serum, but had no this effect in medium without serum. Conclusion In medium without serum, astrocytes could differentiate into activated state ceils with CNTF application, but could not proliferate; in medium with serum, astrocytes could proliferate with aid of CNTF.展开更多
Objective: To investigate the influence of central administration ofneuropeptide Y-Y5 receptor antisense oligodeoxynucleotides (ODNs) on body weight, fat pads of SDrats, and the effects of white adipocytes lipolysis a...Objective: To investigate the influence of central administration ofneuropeptide Y-Y5 receptor antisense oligodeoxynucleotides (ODNs) on body weight, fat pads of SDrats, and the effects of white adipocytes lipolysis and apoptosis. Methods: Y5 receptor antisense,sense, mismatched ODNs or vehicle was intracerebroventricularly (i. c. v.) injected. Averageadipocyte area was calculated. DNA ladders were measured to evaluate adipocyte apoptosis, and RT-PCRwas used to analyse the expression of Bcl-2 and Bax gene. Results: Central administration of Y5antisense ODNs significantly decreased body weight, and average adipocyte area. DNA fragmentationwas present after electrophoresis at epididymal adipose tissue. The expression of Bcl-2 gene wasdownregulated, while the expression of Bax upregulated. Conclusion: Lipolysis and adipocyteapoptosis may be important mechanisms far 75 antisense therapy.展开更多
Understanding of the differentiation profile of brain tumor stem cells (BTSCs), the key ones among tumor cell population, through comparison with neural stem cells (NSCs) would lend insight into the origin of glio...Understanding of the differentiation profile of brain tumor stem cells (BTSCs), the key ones among tumor cell population, through comparison with neural stem cells (NSCs) would lend insight into the origin of glioma and ultimately yield new approaches to fight this intractable disease. Here, we cultured and purified BTSCs from surgical glioma specimens and NSCs from human fetal brain tissue, and further analyzed their cellular biological behaviors, especially their differentiation property. As expected, NSCs differentiated into mature neural phenotypes. In the same differentiation condition, however, BTSCs exhibited distinguished differences. Morphologically, cells grew flattened and attached for the first week, but gradually aggregated and reformed floating tumor sphere thereafter. During the corresponding period, the expression rate of undifferentiated cell marker CD 133 and nestin in BTSCs kept decreasing, but 1 week later, they regained ascending tendency. Interestingly, the differentiated cell markers GFAP and β-tubulinlII showed an expression change inverse to that of undifferentiated cell markers. Taken together, BTSCs were revealed to possess a capacity to resist differentiation, which actually represents the malignant behaviors of glioma.展开更多
Glial cells in the gut represent the morphological and functional equivalent of astrocytes and microglia in the central nervous system (CNS). In recent years, the role of enteric glial cells (EGCs) has extended fr...Glial cells in the gut represent the morphological and functional equivalent of astrocytes and microglia in the central nervous system (CNS). In recent years, the role of enteric glial cells (EGCs) has extended from that of simple nutritive support for enteric neurons to that of being pivotal participants in the regulation of inflammatory events in the gut. Similar to the CNS astrocytes, the EGCs physiologically express the SIOOB protein that exerts either trophic or toxic effects depending on its concentration in the extracellular milieu. In the CNS, SIOOB overexpression is responsible for the initiation of a gliotic reaction by the release of pro-inflammatory mediators, which may have a deleterious effect on neighboring cells. SlOOB-mediated pro-inflammatory effects are not limited to the brain: SIOOB overexpression is associated with the onset and maintenance of inflammation in the human gut too. In this review we describe the major features of EGCs and SIOOB protein occurring in intestinal inflammation deriving from such.展开更多
The role of enteric glial cells has somewhat changed from that of mere mechanical support elements, gluing together the various components of the enteric nervous system, to that of active participants in the complex i...The role of enteric glial cells has somewhat changed from that of mere mechanical support elements, gluing together the various components of the enteric nervous system, to that of active participants in the complex interrelationships of the gut motor and inflammatory events. Due to their multiple functions, spanning from supporting elements in the myenteric plexuses to neurotransmitters, to neuronal homeostasis, to antigen presenting cells, this cell population has probably more intriguing abilities than previously thought. Recently, some evidence has been accumulating that shows how these cells may be involved in the pathophysiological aspects of some diseases. This review will deal with the properties of the enteric glial cells more strictly related to gastrointestinal motor function and the human pathological conditions in which these cells may play a role, suggesting the possibility of enteric neuro- gliopathies.展开更多
Objective The literature has shown that cognitive and emotional changes may occur after chronic treatment with glucocorticoids. This might be caused by the suppressive effect of glucocorticoids on hippocampal neurogen...Objective The literature has shown that cognitive and emotional changes may occur after chronic treatment with glucocorticoids. This might be caused by the suppressive effect of glucocorticoids on hippocampal neurogenesis and cell proliferation. Paroxetine, a selective serotonin reuptake transporter, is a commonly used antidepressant for alleviation of signs and symptoms of clinical depression. It was discovered to promote hippocampal neurogenesis in the past few years and we wanted to investigate its interaction with glucocorticoid in this study. Methods Adult rats were given vehicle, corticosterone, paroxetine, or both corticosterone and paroxetine for 14 d. Cell proliferation in the dentate gyrus was quantified using 5-bromo-2-deoxyuridine (BrdU) immunohistochemistry. Results The corticosterone treatment suppressed while paroxetine treatment increased hippocampal cell proliferation. More importantly, paroxetine treatment could reverse the suppressive effect of corticosterone on hippocampal cell proliferation. Conclusion This may have clinic application in preventing hippocampal damage after glucocorticoid treatment.展开更多
Objective: To examine modulations caused by cyclooxygenase-2 (COX-2) inhibitors on altered microenvironments and overbalanced neurotransmitters in pilocarpine-induced epileptic status rats and to investigate possib...Objective: To examine modulations caused by cyclooxygenase-2 (COX-2) inhibitors on altered microenvironments and overbalanced neurotransmitters in pilocarpine-induced epileptic status rats and to investigate possible mechanisms. Methods: Celecoxib (a COX-2 inhibitor) was administered 45 min prior to pilocarpine administration. The effects of COX-2 inhibitors on mlPSCs (miniature GABAergic inhibitory postsynaptic currents) of CA3 pyramidal cells in the hippocampus were recorded. Expressions of COX-2, c-Fos, newly generated neurons, and activated microgliosis were analyzed by immunohistochemistry, and expressions of c^-subunit of y-amino butyric acid (GABAA) receptors and mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK) activity were detected by Western blotting. Results: Pretreatment with celecoxib showed protection against pilocarpine-induced seizures. Celecoxib prevented microglia activation in the hilus and inhibited the abnormal neurogenesis and astrogliosis in the hippocampus by inhibiting MAPK/ERK activity and c-Fos transcription. Celecoxib also up-regulated the expression of GABAA receptors. NS-398 (N-2-cyclohexyloxy-4-nitrophenyl-methanesulfonamide), another COX-2 inhibitor, enhanced the frequency and decay time of mIPSCs. Conclusion: The COX-2 inhibitor celecoxib decreased neuronal excitability and prevented epileptogenesis in pilocarpine-induced status epilepticus rats. Celecoxib regulates synaptic reorganization by inhibiting astrogliosis and ectopic neurogenesis by attenuating MAPK/ERK signal activity, mediated by a GABAergic mechanism.展开更多
The present study observed the dynamic expression of CD133, nuclear factor-κB and glial fibrUlary acidic protein in the hippocampal CA3 area of the experimental posttraumatic epilepsy rats to investigate whether glio...The present study observed the dynamic expression of CD133, nuclear factor-κB and glial fibrUlary acidic protein in the hippocampal CA3 area of the experimental posttraumatic epilepsy rats to investigate whether gliosis occurs after posttraumatic epilepsy. CD133 and nuclear factor-κB expression was increased at 1 day after posttraumatic epilepsy, peaked at 7 days, and gradually decreased up to 14 days, as seen by double-irnmunohistochemical staining. Glial fibrillary acidic protein/nuclear factor-EB double-labeled cells increased with time and peaked at 14 days after posttraumatic epilepsy. Results show that activation of hippocampal neural stem cells and glial proliferation after posttraumatic epilepsy-induced oxidative stress increases hippocampal glial cell density.展开更多
The 45, 55, 65 and 100 kDa ATP-binding proteinases (ATP-BPases) of the heat-shocked (44 ℃ for 30 min, recovery for 12h) rat C6 glioma cells were purified by DEAE-ionexchange and ATP-affinity chromatography. Their mol...The 45, 55, 65 and 100 kDa ATP-binding proteinases (ATP-BPases) of the heat-shocked (44 ℃ for 30 min, recovery for 12h) rat C6 glioma cells were purified by DEAE-ionexchange and ATP-affinity chromatography. Their molecular masses, isoelectric points (pI), pH-optima and other properties were analyzed by native proteinase gels.It was shown that the 65 kDa ATP-BPase is specifically induced by heat shock and not detectable in control cells.Its N-terminal 1-9 amino acid sequence was determined by Edman degradation, but no homologies to other proteins in the protein data bases were found. 30 and 31 kDa proteinases can be cleaved from the 45, 55 and 65 kDa proteinases to which they are linked. A possible relationship of the heat-induced 65 kDa ATP-BPase with the ATP-dependent proteinases (ATP-DPases) in prokaryotes and eukaryotes is discussed.展开更多
Objective The present study aimed to explore the role of P2Y1 receptor in glial fibrillary acidic protein (GFAP) production and glial cell line-derived neurotrophic factor (GDNF) secretion of astrocytes under isch...Objective The present study aimed to explore the role of P2Y1 receptor in glial fibrillary acidic protein (GFAP) production and glial cell line-derived neurotrophic factor (GDNF) secretion of astrocytes under ischemic insult and the related signaling pathways. Methods Using transient right middle cerebral artery occlusion (tMCAO) and oxygen-glucose-serum deprivation for 2 h as the model of ischemic injury in vivo and in vitro, immunofluorescence, quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, enzyme linked immunosorbent assay (ELISA) were used to investigate location of P2Y1 receptor and GDNF, the expression of GFAP and GDNF, and the changes of signaling molecules. Results Blockage of P2Y1 receptor with the selective antagonist N^6-methyl-2′-deoxyadenosine 3′,5′-bisphosphate diammonium (MRS2179) reduced GFAP production and increased GDNF production in the antagonist group as compared with simple ischemic group both in vivo and in vitro. Oxygen-glucose-serum deprivation and blockage of P2Y1 receptor caused elevation of phosphorylated Akt and cAMP response element binding protein (CREB), and reduction of phosphorylated Janus kinase2 (JAK2) and signal transducer and activator of transcription3 (STAT3, Ser727). After blockage of P2Y1 receptor and deprivation of oxygen-glucose-serum, AG490 (inhibitor of JAK2) reduced phosphorylation of STAT3 (Ser727) as well as expression of GFAP; LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3-K), decreased phosphorylation of Akt and CREB; the inhibitor of mitogen-activated protein kinase kinase 1/2 (MEK 1/2) U0126, an important molecule of Ras/extracellular signal- regulated kinase (ERK) signaling pathway, decreased the phosphorylation of JAK2, STAT3 (Ser727), Akt and CREB. Conclusion These results suggest that P2Y1 receptor plays a role in the production of GFAP and GDNF in astrocytes under transient ischemic condition and the related signaling pathways may be JAK2/STAT3 and PI3-K/Akt/CREB, respectively, and that crosstalk probably exists between them.展开更多
基金supported by the National Natural Science Foundation (81601728,31500726)the Natural Science Foundation of Hunan Province (2021JJ41002),China。
文摘Objective:Inflammation in the central nervous system plays a crucial role in the occurrence and development of sepsis-associated encephalopathy.This study aims to explore the effects of maresin 1(MaR1),an anti-inflammatory and pro-resolving lipid mediator,on sepsis-induced neuroinflammation and cognitive impairment.Methods:Mice were randomly assigned to 4 groups:A sham group(sham operation+vehicle),a cecal ligation and puncture(CLP)group(CLP operation+vehicle),a MaR1-LD group(CLP operation+1 ng MaR1),and a MaR1-HD group(CLP operation+10 ng MaR1).MaR1 or vehicle was intraperitoneally administered starting 1 h before CLP operation,then every other day for 7 days.Survival rates were monitored,and serum inflammatory cytokines[tumor necrosis factor alpha(TNF-α),interleukin(IL)-1β,and IL-6]were measured 24 h after operation using enzyme-linked immunosorbent assay(ELISA).Cognitive function was assessed 7 days after operation using the Morris water maze(MWM)test and novel object recognition(NOR)task.The mRNA expression of TNF-α,IL-1β,IL-6,inducible nitric oxide synthase(iNOS),IL-4,IL-10,and arginase 1(Arg1)in cortical and hippocampal tissues was determined by real-time reverse transcription PCR(RT-PCR).Western blotting was used to determine the protein expression of iNOS,Arg1,signal transducer and activator of transcription 6(STAT6),peroxisome proliferator-activated receptor gamma(PPARγ),and phosphorylated STAT6(p-STAT6)in hippocampal tissue.Microglia activation was visualized via immunofluorescence.Mice were also treated with the PPARγantagonist GW9662 to confirm the involvement of this pathway in MaR1’s effects.Results:CLP increased serum levels of TNF-α,IL-1β,and IL-6,and reduced body weight and survival rates(all P<0.05).Both 1 ng and 10 ng doses of MaR1 significantly reduced serum TNF-α,IL-1β,and IL-6 levels,improved body weight,and increased survival rates(all P<0.05).No significant difference in efficacy was observed between the 2 doses(all P>0.05).MWM test and NOR task indicated that CLP impaired spatial learning,which MaR1 mitigated.However,GW9662 partially reversed MaR1’s protective effects.Real-time RTPCR results demonstrated that,compared to the sham group,mRNA expression of TNF-α,IL-1β,and iNOS significantly increased in hippocampal tissues following CLP(all P<0.05),while IL-4,IL-10,and Arg1 showed a slight decrease,though the differences were not statistically significant(all P>0.05).Compared to the CLP group,both 1 ng and 10 ng MaR1 decreased TNF-α,IL-1β,and iNOS mRNA expression in hippocampal tissues and increased IL-4,IL-10,and Arg1 mRNA expression(all P<0.05).Immunofluorescence results indicated a significant increase in Iba1-positive microglia in the hippocampus after CLP compared to the sham group(P<0.05).Administration of 1 ng and 10 ng MaR1 reduced the percentage area of Iba1-positive cells in the hippocampus compared to the CLP group(both P<0.05).Western blotting results showed that,compared to the CLP group,both 1 ng and 10 ng MaR1 down-regulated the iNOS expression,while up-regulated the expression of Arg1,PPARγ,and p-STAT6(all P<0.05).However,the inclusion of GW9662 counteracted the MaR1-induced upregulation of Arg1 and PPARγcompared to the MaR1-LD group(all P<0.05).Conclusion:MaR1 inhibits the classical activation of hippocampal microglia,promotes alternative activation,reduces sepsis-induced neuroinflammation,and improves cognitive decline.
文摘Objective Neuroinflammation with microglial activation has been implicated to have a strong association with the progressive dopaminergic neuronal loss in Parkinson's disease (PD). The present study was undertaken to evaluate the activation profile of microglia in 1-methyl-4-phenyl pyridinium (MPP^+)-induced hemiparkinsonian rats. Triptolide, a potent immunosuppressant and microglia inhibitor, was then examined for its efficacy in protecting dopaminergic neurons from injury and ameliorating behavioral disabilities induced by MPP^+. Methods The rat model of PD was established by intranigral microinjection of MPP^+. At baseline and on day 1, 3, 7, 14, 21 following MPP^+ injection, the degree of microglial activation was examined by detecting the immunodensity of OX-42 (microglia marker) in the substantia nigra (SN). The number of viable dopaminergic neurons was determined by measuring tyrosine hydroxylase (TH) positive neurons in the SN. Behavioral performances were evaluated by counting the number of rotations induced by apomorphine, calculating scores of forelimb akinesia and vibrissae-elicited forelimb placing asymmetry. Results Intranigral injection of MPP^+ resulted in robust activa- tion of microglia, progressive depletion of dopaminergic neurons, and ongoing aggravation of behavioral disabilities in rats. Triptolide significantly inhibited microglial activation, partially prevented dopaminergic cells from death and improved behavioral performances. Conclusion These data demonstrated for the first time a neuroprotective effect of triptolide on dopaminergic neurons in MPP^+ induced hemiparkinsonian rats. The protective effect of triptolide may, at least partially, be related to the inhibition of MPP^+-induced microglial activation. Our results lend strong support to the use of immunosuppressive agents in the management of PD.
基金This work was supported by the grant of National Natural Science Foundation of China (No. 30470598).
文摘Objective To investigate the cell proliferation and differentiation in the developing brain of mouse. Methods C57/BL6 mice were divided into 3 groups at random. Bromodeoxyuridine (BrdU) was injected into the brains in different development periods once a day for 7 d. The brains were retrieved 4 weeks after the last BrdU injection. Immunohistochemical and immunofluorescent studies were carried out for detecting cell proliferation (BrdU) and cell differentiation (NeuN, APC, lbal, and S 100β), respectively. Results The number of BrdU labeled cells decreased significantly with the development of the brain. Cell proliferation was prominent in the cortex and striatum. A small portion of BrdU and NeuN double labeled cells could be detected in the cortex at the early stage of development, and in the striatum and CA of the hippocampus in all groups. The majority of BrdU labeled cells were neuroglia, and the number of neuroglia cells decreased dramatically with brain maturation. Neurogenesis is the major cytogenesis in the dentate gyrus. Conclusion These results demonstrated that cell proliferation, differentiation and survival were age and brain region related.
文摘Objective To evaluate the role of thrombin-activated microglia in the neurodegeneration of nigral dopaminergic neurons in the rat substantia nigra (SN) in vivo. Methods After stereotaxic thrombin injection into unilateral SN of rats, immunostaining, reverse transcription polymerase chain reaction (RT-PCR) and biochemical methods were used to observe tyrosine hydroxylase (TH) irnmunoreactive positive cells, microglia activation, nitric oxide (NO) amount and inducible nitricoxide synthase (iNOS) expression. Results (1) Selective damage to dopaminergic neurons was produced after thrombin injection, which was evidenced by loss of TH imrnunostaining in time-dependent manner; (2) Strong microglial activation was observed in the SN; (3) RT-PCR demonstrated the early and transient expression of neurotoxic factors iNOS mRNA in the SN. Immunofluorescence results found that thrombin induced expression of iNOS in microglia. The NO production in the thrombininjected rats was significantly higher than that of controls (P 〈 0.05). Conclusion Thrombin intranigral injection can injure the dopaminergic neurons in the SN. Thrombin-induced microglia activation precedes dopaminergic neuron degeneration, which suggest that activation of microglia and release of NO may play important roles in dopaminergic neuronal death in the SN.
基金This work was supported by the Key Program of Natural Science Foundation of Yunnan Province, China (No. 2003C0010Z).
文摘Objective To investigate the expression of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) in monkeys of resuscitation after selective cerebral ultraprofound hypothermia and blood flow occlusion. Methods The monkeys were immediately removed brain after death in operation of group A (identical temperature perfusion group) and group B (ultraprofound hypothermia perfusion group). Immunohistochemical technique was used to determine frontal cellular expression of NGF and GDNF. Statistics were analyzed by ANOVA analyses with significance level at P 〈 0.05. Results The expressions of NGF and GDNF in the group B were significantly higher than those in the group A (P 〈 0.05). Conclusion NGF and GDNF increased significantly in the monkeys of resuscitation after selective cerebral ultraprofound hypothermia and blood flow occlusion. It may be a protective mechanism for neuron survival and neural function recovery.
基金This work was supported by the Natural Science Foundation of Shanghai Municipality(No.03ZR14016).
文摘Objective To construct recombinant lentiviral vectors for gene delivery of the glial cell line-derived neurotropnic factor (GDNF), and evaluate the neuroprotective effect of GDNF on lactacystin-damaged PC12 cells by transfecting it into bone marrow stromal cells (BMSCs). Methods pLenti6/V5-GDNF plasmid was set up by double restriction enzyme digestion and ligation, and then the plasmid was transformed into Top10 cells. Purified pLenti6/V5-GDNF plasmids from the positive clones and the packaging mixture were cotransfected to the 293FT packaging cell line by Lipofectamine2000 to produce lentivirus, then the concentrated virus was transduced to BMSCs. Overexpression of GDNF in BMSCs was tested by RT-PCR, ELISA and immunocytochemistry, and its neuroprotection for lactacystin-damaged PC12 cells was evaluated by MTT assay. Results Virus stock of GDNF was harvested with the titer of 5.6×10^5 TU/mL. After tmnsduction, GDNF-BMSCs successfully secreted GDNF to supematant with nigher concentration (800 pg/mL) than BMSCs did (less than 100 pg/mL). The supematant of GDNF-BMSCs could significantly alleviate the damage of PC12 cells induced by lactacystin (10 μmol/L). Conclusion Overexpression of lentivirus-mediated GDNF in the BMSCs cells can effectively protect PC12 cells from the injury by the proteasome inhibitor.
文摘Objective: To observe the relationship between non-small cell lung cancer with neuroendrocrine differentiation (NSCLC-NE) and patients' postoperative survival. Methods: During April 1997 to April 1999, 98 cases of hlng cancer were surgically treated. The tumor specimens of the patients were stained by NE markers, i.e. neuron specific enolase (NSE) and synaptophysin (SY). The intensity of NE markers reaction was divided as "+". "++". "+++" scale groups. The same specimens were also examined under an electron microscope for the specific neuroendocrine granules. All enrolled patients were followed up for 36 months, and the longest follow-up time was 60 months. The COX proportional hazard model multivariate analysis was applied to observe the relationship between the NSCLE-NE and the patients' postoperative survival. Results: In 91 cases of NSCLC, 63.7% (58/91) were positive for NE stain reaction. Among them, 59.3% (54/91) were positive for NSE and 24.1% (22/91) for SY. 48.4% (44/91) were considered as NSCLC-NE by the combination of NE inarker stain reaction and electron microscopic examination. COX proportional hazard model lnnltivariate analysis showed that the NSCLC-NE patients' survival was significantly shortened (P=0.048). The following factors were related to NSCLC-NE patients' survival: lung cancer cell differentiation (P=0.006), clinical lung cancer stage (P=0.001), the NE markers reaction (P=0.054). Conclusion: NSCLE-NE is significantly related to the cancer cell differentiation and the patients' postoperative survival. The NE markers should be applied clinically as one of prognostic factors to evaluate the postoperative survival of NSCLC patients.
文摘Objective To observe the activating effect of ciliary neurotrophic factor (CNTF) on astrocyte in vitro. Methods Astrocytes cultured purely from newborn rats. Cerebral cortex was raised in normal and serum deprivation condition with different concentrations (in ng/ml: 0, 2, 20, or 200) of CNTF. After cultured for 24 h, the shape and the cell cycle of astrocytes were examined by immunocytochemistry and flow cytometer, respectively. Results The immunoactivity of glial fibrillary acidic protein (GFAP) and the nuclear size of astrocytes were increased when CNTF was applied, whether cells were cultured in medium with or without serum. CNTF promoted astrocytes to enter the cell cycle in medium with serum, but had no this effect in medium without serum. Conclusion In medium without serum, astrocytes could differentiate into activated state ceils with CNTF application, but could not proliferate; in medium with serum, astrocytes could proliferate with aid of CNTF.
基金Supported by grant from National Natural Science Foundation (39870362)Natural Science Foundation of Education Committee of Jiangsu Province (98KJB320002).
文摘Objective: To investigate the influence of central administration ofneuropeptide Y-Y5 receptor antisense oligodeoxynucleotides (ODNs) on body weight, fat pads of SDrats, and the effects of white adipocytes lipolysis and apoptosis. Methods: Y5 receptor antisense,sense, mismatched ODNs or vehicle was intracerebroventricularly (i. c. v.) injected. Averageadipocyte area was calculated. DNA ladders were measured to evaluate adipocyte apoptosis, and RT-PCRwas used to analyse the expression of Bcl-2 and Bax gene. Results: Central administration of Y5antisense ODNs significantly decreased body weight, and average adipocyte area. DNA fragmentationwas present after electrophoresis at epididymal adipose tissue. The expression of Bcl-2 gene wasdownregulated, while the expression of Bax upregulated. Conclusion: Lipolysis and adipocyteapoptosis may be important mechanisms far 75 antisense therapy.
文摘Understanding of the differentiation profile of brain tumor stem cells (BTSCs), the key ones among tumor cell population, through comparison with neural stem cells (NSCs) would lend insight into the origin of glioma and ultimately yield new approaches to fight this intractable disease. Here, we cultured and purified BTSCs from surgical glioma specimens and NSCs from human fetal brain tissue, and further analyzed their cellular biological behaviors, especially their differentiation property. As expected, NSCs differentiated into mature neural phenotypes. In the same differentiation condition, however, BTSCs exhibited distinguished differences. Morphologically, cells grew flattened and attached for the first week, but gradually aggregated and reformed floating tumor sphere thereafter. During the corresponding period, the expression rate of undifferentiated cell marker CD 133 and nestin in BTSCs kept decreasing, but 1 week later, they regained ascending tendency. Interestingly, the differentiated cell markers GFAP and β-tubulinlII showed an expression change inverse to that of undifferentiated cell markers. Taken together, BTSCs were revealed to possess a capacity to resist differentiation, which actually represents the malignant behaviors of glioma.
基金Supported by research funds from the Italian Ministry of University and Research (COFIN Projects No. 2004062155 to GS and RC)
文摘Glial cells in the gut represent the morphological and functional equivalent of astrocytes and microglia in the central nervous system (CNS). In recent years, the role of enteric glial cells (EGCs) has extended from that of simple nutritive support for enteric neurons to that of being pivotal participants in the regulation of inflammatory events in the gut. Similar to the CNS astrocytes, the EGCs physiologically express the SIOOB protein that exerts either trophic or toxic effects depending on its concentration in the extracellular milieu. In the CNS, SIOOB overexpression is responsible for the initiation of a gliotic reaction by the release of pro-inflammatory mediators, which may have a deleterious effect on neighboring cells. SlOOB-mediated pro-inflammatory effects are not limited to the brain: SIOOB overexpression is associated with the onset and maintenance of inflammation in the human gut too. In this review we describe the major features of EGCs and SIOOB protein occurring in intestinal inflammation deriving from such.
文摘The role of enteric glial cells has somewhat changed from that of mere mechanical support elements, gluing together the various components of the enteric nervous system, to that of active participants in the complex interrelationships of the gut motor and inflammatory events. Due to their multiple functions, spanning from supporting elements in the myenteric plexuses to neurotransmitters, to neuronal homeostasis, to antigen presenting cells, this cell population has probably more intriguing abilities than previously thought. Recently, some evidence has been accumulating that shows how these cells may be involved in the pathophysiological aspects of some diseases. This review will deal with the properties of the enteric glial cells more strictly related to gastrointestinal motor function and the human pathological conditions in which these cells may play a role, suggesting the possibility of enteric neuro- gliopathies.
文摘Objective The literature has shown that cognitive and emotional changes may occur after chronic treatment with glucocorticoids. This might be caused by the suppressive effect of glucocorticoids on hippocampal neurogenesis and cell proliferation. Paroxetine, a selective serotonin reuptake transporter, is a commonly used antidepressant for alleviation of signs and symptoms of clinical depression. It was discovered to promote hippocampal neurogenesis in the past few years and we wanted to investigate its interaction with glucocorticoid in this study. Methods Adult rats were given vehicle, corticosterone, paroxetine, or both corticosterone and paroxetine for 14 d. Cell proliferation in the dentate gyrus was quantified using 5-bromo-2-deoxyuridine (BrdU) immunohistochemistry. Results The corticosterone treatment suppressed while paroxetine treatment increased hippocampal cell proliferation. More importantly, paroxetine treatment could reverse the suppressive effect of corticosterone on hippocampal cell proliferation. Conclusion This may have clinic application in preventing hippocampal damage after glucocorticoid treatment.
文摘Objective: To examine modulations caused by cyclooxygenase-2 (COX-2) inhibitors on altered microenvironments and overbalanced neurotransmitters in pilocarpine-induced epileptic status rats and to investigate possible mechanisms. Methods: Celecoxib (a COX-2 inhibitor) was administered 45 min prior to pilocarpine administration. The effects of COX-2 inhibitors on mlPSCs (miniature GABAergic inhibitory postsynaptic currents) of CA3 pyramidal cells in the hippocampus were recorded. Expressions of COX-2, c-Fos, newly generated neurons, and activated microgliosis were analyzed by immunohistochemistry, and expressions of c^-subunit of y-amino butyric acid (GABAA) receptors and mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK) activity were detected by Western blotting. Results: Pretreatment with celecoxib showed protection against pilocarpine-induced seizures. Celecoxib prevented microglia activation in the hilus and inhibited the abnormal neurogenesis and astrogliosis in the hippocampus by inhibiting MAPK/ERK activity and c-Fos transcription. Celecoxib also up-regulated the expression of GABAA receptors. NS-398 (N-2-cyclohexyloxy-4-nitrophenyl-methanesulfonamide), another COX-2 inhibitor, enhanced the frequency and decay time of mIPSCs. Conclusion: The COX-2 inhibitor celecoxib decreased neuronal excitability and prevented epileptogenesis in pilocarpine-induced status epilepticus rats. Celecoxib regulates synaptic reorganization by inhibiting astrogliosis and ectopic neurogenesis by attenuating MAPK/ERK signal activity, mediated by a GABAergic mechanism.
基金the Science and Technology Foundation of Fujian Province, No. 2007F5045the Program for New Century Excellent Talents in Fujian Province University, No. NCETFJ-0702
文摘The present study observed the dynamic expression of CD133, nuclear factor-κB and glial fibrUlary acidic protein in the hippocampal CA3 area of the experimental posttraumatic epilepsy rats to investigate whether gliosis occurs after posttraumatic epilepsy. CD133 and nuclear factor-κB expression was increased at 1 day after posttraumatic epilepsy, peaked at 7 days, and gradually decreased up to 14 days, as seen by double-irnmunohistochemical staining. Glial fibrillary acidic protein/nuclear factor-EB double-labeled cells increased with time and peaked at 14 days after posttraumatic epilepsy. Results show that activation of hippocampal neural stem cells and glial proliferation after posttraumatic epilepsy-induced oxidative stress increases hippocampal glial cell density.
文摘The 45, 55, 65 and 100 kDa ATP-binding proteinases (ATP-BPases) of the heat-shocked (44 ℃ for 30 min, recovery for 12h) rat C6 glioma cells were purified by DEAE-ionexchange and ATP-affinity chromatography. Their molecular masses, isoelectric points (pI), pH-optima and other properties were analyzed by native proteinase gels.It was shown that the 65 kDa ATP-BPase is specifically induced by heat shock and not detectable in control cells.Its N-terminal 1-9 amino acid sequence was determined by Edman degradation, but no homologies to other proteins in the protein data bases were found. 30 and 31 kDa proteinases can be cleaved from the 45, 55 and 65 kDa proteinases to which they are linked. A possible relationship of the heat-induced 65 kDa ATP-BPase with the ATP-dependent proteinases (ATP-DPases) in prokaryotes and eukaryotes is discussed.
基金the National Natural Science Foundation of China (No. 30500189)
文摘Objective The present study aimed to explore the role of P2Y1 receptor in glial fibrillary acidic protein (GFAP) production and glial cell line-derived neurotrophic factor (GDNF) secretion of astrocytes under ischemic insult and the related signaling pathways. Methods Using transient right middle cerebral artery occlusion (tMCAO) and oxygen-glucose-serum deprivation for 2 h as the model of ischemic injury in vivo and in vitro, immunofluorescence, quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, enzyme linked immunosorbent assay (ELISA) were used to investigate location of P2Y1 receptor and GDNF, the expression of GFAP and GDNF, and the changes of signaling molecules. Results Blockage of P2Y1 receptor with the selective antagonist N^6-methyl-2′-deoxyadenosine 3′,5′-bisphosphate diammonium (MRS2179) reduced GFAP production and increased GDNF production in the antagonist group as compared with simple ischemic group both in vivo and in vitro. Oxygen-glucose-serum deprivation and blockage of P2Y1 receptor caused elevation of phosphorylated Akt and cAMP response element binding protein (CREB), and reduction of phosphorylated Janus kinase2 (JAK2) and signal transducer and activator of transcription3 (STAT3, Ser727). After blockage of P2Y1 receptor and deprivation of oxygen-glucose-serum, AG490 (inhibitor of JAK2) reduced phosphorylation of STAT3 (Ser727) as well as expression of GFAP; LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3-K), decreased phosphorylation of Akt and CREB; the inhibitor of mitogen-activated protein kinase kinase 1/2 (MEK 1/2) U0126, an important molecule of Ras/extracellular signal- regulated kinase (ERK) signaling pathway, decreased the phosphorylation of JAK2, STAT3 (Ser727), Akt and CREB. Conclusion These results suggest that P2Y1 receptor plays a role in the production of GFAP and GDNF in astrocytes under transient ischemic condition and the related signaling pathways may be JAK2/STAT3 and PI3-K/Akt/CREB, respectively, and that crosstalk probably exists between them.