期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于神经网络模型的水源地水质参数反演研究 被引量:3
1
作者 宋月君 莫明浩 汪邦稳 《中国农村水利水电》 北大核心 2011年第2期98-100,108,共4页
以武汉市的主要供水水源地水质参数(氨氮含量)为研究对象,根据某时段的实测数据、遥感影像数据,尝试性地建立了氨氮含量的神经网络反演模型。反演模型的平均相对误差为4.8%,可用于该项水质指标的反演研究。
关键词 供水水源地 氨氮反演 神经网络反演模型
下载PDF
基于BP神经网络的隧道参数反演模型研究 被引量:1
2
作者 周义舒 刘春 黄富禹 《交通建设与管理》 2021年第1期90-91,共2页
随着我国基础建设的不断推进,越来越多隧道不可避免的修建在地质地貌复杂的地区,隧道施工安全与岩体参数确定变得更加重要。本文运用LM算法改进的BP神经网络与数值模拟技术相结合的方法构建智能隧道围岩参数反演模型,并结合工程实例对... 随着我国基础建设的不断推进,越来越多隧道不可避免的修建在地质地貌复杂的地区,隧道施工安全与岩体参数确定变得更加重要。本文运用LM算法改进的BP神经网络与数值模拟技术相结合的方法构建智能隧道围岩参数反演模型,并结合工程实例对其可靠性进行检验,以期为类似隧道物理力学参数预测提供参考。 展开更多
关键词 BP 神经网络模型、参数反演、隧道施工
下载PDF
武汉市主要供水源地高锰酸盐指数反演分析 被引量:2
3
作者 宋月君 杨洁 +3 位作者 吴胜军 汪邦稳 汤崇军 郑海金 《水资源与水工程学报》 2009年第4期51-57,共7页
城市供水源地水质的好坏,不仅直接影响着城市的经济和社会发展,而且会对城市居民的健康产生威胁,因此对水源地的水质预测就显得格外重要。以武汉市的主要供水源地水质参数高锰酸盐指数为研究对象,根据某时段的实测数据、遥感影像数据和... 城市供水源地水质的好坏,不仅直接影响着城市的经济和社会发展,而且会对城市居民的健康产生威胁,因此对水源地的水质预测就显得格外重要。以武汉市的主要供水源地水质参数高锰酸盐指数为研究对象,根据某时段的实测数据、遥感影像数据和相关辅助信息(实测点透明度、温度、岸边信息和上游排污口信息),尝试性的建立了高锰酸盐指数的常规神经网络反演模型和改进型神经网络反演模型,通过精度和可用性检验,得到常规反演模型的平均误差,取得较高的精度和良好的结果。 展开更多
关键词 供水水源地 水质参数反演 神经网络反演模型 改进的反演模型
下载PDF
Simultaneous Identification of Thermophysical Properties of Semitransparent Media Using a Hybrid Model Based on Artificial Neural Network and Evolutionary Algorithm
4
作者 LIU Yang HU Shaochuang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期458-475,共18页
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv... A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors. 展开更多
关键词 semitransparent medium coupled conduction-radiation heat transfer thermophysical properties simultaneous identification multilayer artificial neural networks(ANNs) evolutionary algorithm hybrid identification model
下载PDF
Study on Remote Sensing of Water Depths Based on BP Artificial Neural Network 被引量:4
5
作者 王艳姣 张培群 +1 位作者 董文杰 张鹰 《Marine Science Bulletin》 CAS 2007年第1期26-35,共10页
A momentum BP neural network model (MBPNNM) was constructed to retrieve the water depth information for the South Channel of the Yangtze River Estuary using the relationship between the reflectance derived from Land... A momentum BP neural network model (MBPNNM) was constructed to retrieve the water depth information for the South Channel of the Yangtze River Estuary using the relationship between the reflectance derived from Landsat 7 satellite data and the water depth information. Results showed that MBPNNM, which exhibited a strong capability of nonlinear mapping, allowed the water depth information in the study area to be retrieved at a relatively high level of accuracy. Affected by the sediment concentration of water in the estuary, MBPNNM enabled the retrieval of water depth of less than 5 meters accurately. However, the accuracy was not ideal for the water depths of more than 10 meters. 展开更多
关键词 Yangtze River Estuary BP neural network water-depth remote sensing retrieval model
下载PDF
Application of BP neural network model with fuzzy optimization in retrieval of biomass parameters 被引量:1
6
作者 陈守煜 郭瑜 《Agricultural Science & Technology》 CAS 2005年第2期7-11,共5页
The retrieval of the biomass parameters from active/passive microwave remote sensing data (10.2 GHz) is performed based on an iterative inversion of BP neural network model with fuzzy optimization. The BP neural net... The retrieval of the biomass parameters from active/passive microwave remote sensing data (10.2 GHz) is performed based on an iterative inversion of BP neural network model with fuzzy optimization. The BP neural network is trained by a set of the measurements of active and passive remote sensing and the ground truth data versus Day of Year during growth. Once the network training is complete, the model can be used to retrieve the temporal variations of the biomass parameters from another set of observation data. The model was used in weights and microware observation data of wheat growth in 1989 to retrieve biomass parameters change of wheat growth this year. The retrieved biomass parameters correspond well with the real data of the growth, which shows that the BP model is scientific and sound. 展开更多
关键词 ANN BP model biomass parameters RETRIEVAL
下载PDF
Neural Network Inversion for Multilayer Quaternion Neural Networks 被引量:1
7
作者 Takehiko Ogawa 《Computer Technology and Application》 2016年第2期73-82,共10页
Recently, solutions to inverse problems have been required in various engineering fields. The neural network inversion method has been studied as one of the neural network-based solutions. On the other hand, the exten... Recently, solutions to inverse problems have been required in various engineering fields. The neural network inversion method has been studied as one of the neural network-based solutions. On the other hand, the extension of the neural network to a higher-dimensional domain, e.g., complex-value or quaternion, has been proposed, and a number of higher-dimensional neural network models have been proposed. Using the quatemion, we have the advantage of expressing 3D (three-dimensional) object attitudes easily. In the quaternion domain, we can define inverse problems where the cause and the result are expressed by the quaternion. In this paper, we extend the neural network inversion method to the quatemion domain. Further, we provide the results of the computer experiments to demonstrate the process and effectiveness of our method. 展开更多
关键词 Inverse problems neural network inversion quatemion inverse mapping inverse kinematics.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部