随着功率模块集成化程度的提高,其散热结构优化已成为研发中的关键。拓扑优化可通过变换散热器形貌、结构来最大化地提升散热效果,因此受到了广泛关注。但在拓扑优化过程中,每步迭代均需要计算模块与散热器温度分布,占用较庞大的计算资...随着功率模块集成化程度的提高,其散热结构优化已成为研发中的关键。拓扑优化可通过变换散热器形貌、结构来最大化地提升散热效果,因此受到了广泛关注。但在拓扑优化过程中,每步迭代均需要计算模块与散热器温度分布,占用较庞大的计算资源和计算时间。为加速传统散热器拓扑优化进程,在基于传统固体各向同性材料惩罚SIMP(solid isotropic material with penalization)散热器拓扑优化方法的基础上,提出一种嵌套神经网络NN(neural network)同步学习的快速迭代方法。首先,构建散热器基于编码器-解码器结构的NN预测模型,即基于散热器形貌迭代进化过程实现优化结构的快速预测;其次,将NN模型与散热器SIMP拓扑优化流程相嵌套,利用迭代过程中的中间形貌同步训练NN;最后,针对单芯片、两芯片模块结构,对比所提方法与传统迭代方法的拓扑优化结果,验证了所提NN同步学习方法的准确性和快速性。展开更多
In order to investigate the influence of hybrid coupling on the synchronization of delayed neural networks, by choosing an improved delay-dependent Lyapunov-Krasovskii functional, one less conservative asymptotical cr...In order to investigate the influence of hybrid coupling on the synchronization of delayed neural networks, by choosing an improved delay-dependent Lyapunov-Krasovskii functional, one less conservative asymptotical criterion based on linear matrix inequality (LMI) is established. The Kronecker product and convex combination techniques are employed. Also the bounds of time-varying delays and delay derivatives are fully considered. By adjusting the inner coupling matrix parameters and using the Matlab LMI toolbox, the design and applications of addressed coupled networks can be realized. Finally, the efficiency and applicability of the proposed results are illustrated by a numerical example with simulations.展开更多
An important problem constraining the practical implementation of robust watermarking technology is the low robustness of existing algorithms against geometrical distortions. An adaptive blind watermarking scheme util...An important problem constraining the practical implementation of robust watermarking technology is the low robustness of existing algorithms against geometrical distortions. An adaptive blind watermarking scheme utilizing neural network for synchronization is proposed in this paper,which allows to recover watermark even if the image has been subjected to generalized geometrical transforms. Through classification of image’s brightness, texture and contrast sensitivity utilizing fuzzy clustering theory and human visual system, more robust watermark is adaptively embedded in DWT domain. In order to register rotation, scaling and translation parameters, feedforward neural network is utilized to learn image geometric pattern represented by six combined low order image moments. The distortion can be inverted after determining the affine distortion applied to the image and watermark can be extracted in a standard way without original image. It only needs a trained neural network. Experimental results demonstrate its advantages over previous method in terms of computational effectiveness and parameter estimation accuracy. It can embed more robust watermark under certain visual distance, and effectively resist JPEG compression, noise and geometric attacks.展开更多
This paper investigates the exponential synchronization problem of some chaotic delayed neural networks based on the proposed general neural network model,which is the interconnection of a linear delayed dynamic syste...This paper investigates the exponential synchronization problem of some chaotic delayed neural networks based on the proposed general neural network model,which is the interconnection of a linear delayed dynamic system and a bounded static nonlinear operator,and covers several well-known neural networks,such as Hopfield neural networks,cellular neural networks(CNNs),bidirectional associative memory(BAM)networks,recurrent multilayer perceptrons(RMLPs).By virtue of Lyapunov-Krasovskii stability theory and linear matrix inequality(LMI)technique,some exponential synchronization criteria are derived.Using the drive-response concept,hybrid feedback controllers are designed to synchronize two identical chaotic neural networks based on those synchronization criteria.Finally,detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws.展开更多
In this paper, we investigate coherence resonance (CR) and noise-induced synchronization in Hindmarsh- Rose (HR) neural network with three different types of topologies: regular, random, and small-world. It is fo...In this paper, we investigate coherence resonance (CR) and noise-induced synchronization in Hindmarsh- Rose (HR) neural network with three different types of topologies: regular, random, and small-world. It is found that the additive noise can induce CR in HR neural network with different topologies and its coherence is optimized by a proper noise level. It is also found that as coupling strength increases the plateau in the measure of coherence curve becomes broadened and the effects of network topology is more pronounced simultaneously. Moreover, we find that increasing the probability p of the network topology leads to an enhancement of noise-induced synchronization in HR neurons network.展开更多
In this paper, global synchronization is discussed for a general class of delayed neural networks with time-varying and distributed delays. Furthermore, the activation func- tions in the neural networks can be differe...In this paper, global synchronization is discussed for a general class of delayed neural networks with time-varying and distributed delays. Furthermore, the activation func- tions in the neural networks can be different type. Based on the drive-response concept and the Lyapunov stability theorem, some sufficient criteria are obtained to guarantee the global synchronization of the considered models even when input sector nonlinearity caused by physical limitations is presented in response systems. Finally, a typical example is also given to illustrate the effectiveness of the proposed synchronization scheme.展开更多
A constructive theorem is established for generalized synchronization (GS) related to C<SUP>1</SUP> diffeomorphic transformations of unidirectionally coupled dynamical arrays. The theorem provides some int...A constructive theorem is established for generalized synchronization (GS) related to C<SUP>1</SUP> diffeomorphic transformations of unidirectionally coupled dynamical arrays. The theorem provides some interpretations about the underlying mechanism of various GS phenomena in nature. As a direct application of the theorem, a chaos-based secure Internet communication scheme is proposed. Moreover, a cellular neural network (CNN) of Chen's chaotic circuits with GS property is designed and studied. Numerical simulation shows that this Chen's CNN has high security and is fast and reliable for secure Internet communications.展开更多
The phenomenon of activity synchronization in biological neural network is considered. Simulation of neurons dynamics in the 6-layer neural network with 110 elements in different regimes: regular spikes, chaotic spik...The phenomenon of activity synchronization in biological neural network is considered. Simulation of neurons dynamics in the 6-layer neural network with 110 elements in different regimes: regular spikes, chaotic spikes, regular and chaotic bursting, etc was performed. Izhykevich's phenomenological model that displays different types of activity inherent for real biological neurons was used for simulation. Space-time diagram for the entire network and raster plots for the whole structure and for each layer separately were built for visual inspection of neural network activity synchronization. Synchronization coefficients based on cross-correlation times of action potentials for all neurons pairs were calculated for the whole neural system and for each layer separately.展开更多
A new method for image segmentation based on pulse neural network is proposed. Every neuron in the network represents one pixel in the image and the network is locally connected. Each group of the neurons that corresp...A new method for image segmentation based on pulse neural network is proposed. Every neuron in the network represents one pixel in the image and the network is locally connected. Each group of the neurons that correspond to each object synchronizes while different groups of the neurons oscillate at different period. Applying this period difference, different objects are divided. In addition to simulation, an analysis of the mechanism of the method is presented in this paper.展开更多
A new method for image edge detection based on a pulse neural network is proposed in this paper. The network is locally connected. The external input of each neuron of the network is gray value of the corresponding pi...A new method for image edge detection based on a pulse neural network is proposed in this paper. The network is locally connected. The external input of each neuron of the network is gray value of the corresponding pixel. The synchrony of the neuron and its neighbors is detected by detection neurons. The edge of the image can be read off at minima of the total activity of the detection neurons.展开更多
To eliminate harmonic pollution incurred from the static synchronous compensator(STATCOM), a method of applying artificial neural network is presented. When PWM wave is formed based on the harmonic suppression theory,...To eliminate harmonic pollution incurred from the static synchronous compensator(STATCOM), a method of applying artificial neural network is presented. When PWM wave is formed based on the harmonic suppression theory, a concave is set on certain angle of the square wave to suppress unnecessary harmonics, by timely and on-line determining the chopping angle corresponding to respective harmonics through artificial neural network, i.e. by setting the position of concave to eliminate corresponding harmonics, the harmonic component on output voltage of the inverter can be improved. To conclude through computer simulation test, the perfect control effect has been proved.展开更多
Effects of coupling distance on synchronization and coherence of chaotic neurons in complex networks arenumerically investigated.We find that it is not beneficial to neurons synchronization if confining the coupling d...Effects of coupling distance on synchronization and coherence of chaotic neurons in complex networks arenumerically investigated.We find that it is not beneficial to neurons synchronization if confining the coupling distanceof random edges to a limit d_(max),but help to improve their coherence.Moreover,there is an optimal value of d_(max) atwhich the coherence is maximum.展开更多
In this paper, a novel method of licence plate recognition (LPR) using the vertical traverse density (VTD) and horizontal traverse density (HTD) is presented. The neutral network algorithm using VTD and HTD features i...In this paper, a novel method of licence plate recognition (LPR) using the vertical traverse density (VTD) and horizontal traverse density (HTD) is presented. The neutral network algorithm using VTD and HTD features is also an innovation. In addition, a so called secondary recognition method which splits characters into different parts is developed. Experimental results show that it is a simple and fast algorithm, which meets the request of real time and nicety performances of LPR and thus has applied value in intelligence transportation system (ITS).展开更多
文摘随着功率模块集成化程度的提高,其散热结构优化已成为研发中的关键。拓扑优化可通过变换散热器形貌、结构来最大化地提升散热效果,因此受到了广泛关注。但在拓扑优化过程中,每步迭代均需要计算模块与散热器温度分布,占用较庞大的计算资源和计算时间。为加速传统散热器拓扑优化进程,在基于传统固体各向同性材料惩罚SIMP(solid isotropic material with penalization)散热器拓扑优化方法的基础上,提出一种嵌套神经网络NN(neural network)同步学习的快速迭代方法。首先,构建散热器基于编码器-解码器结构的NN预测模型,即基于散热器形貌迭代进化过程实现优化结构的快速预测;其次,将NN模型与散热器SIMP拓扑优化流程相嵌套,利用迭代过程中的中间形貌同步训练NN;最后,针对单芯片、两芯片模块结构,对比所提方法与传统迭代方法的拓扑优化结果,验证了所提NN同步学习方法的准确性和快速性。
基金The National Natural Science Foundation of China (No.60764001, 60835001,60875035, 61004032)the Postdoctoral Key Research Fund of Southeast Universitythe Natural Science Foundation of Jiangsu Province(No.BK2008294)
文摘In order to investigate the influence of hybrid coupling on the synchronization of delayed neural networks, by choosing an improved delay-dependent Lyapunov-Krasovskii functional, one less conservative asymptotical criterion based on linear matrix inequality (LMI) is established. The Kronecker product and convex combination techniques are employed. Also the bounds of time-varying delays and delay derivatives are fully considered. By adjusting the inner coupling matrix parameters and using the Matlab LMI toolbox, the design and applications of addressed coupled networks can be realized. Finally, the efficiency and applicability of the proposed results are illustrated by a numerical example with simulations.
基金the National High Technology Research and Development Program of China(Grant No. 2001AA422420-02).
文摘An important problem constraining the practical implementation of robust watermarking technology is the low robustness of existing algorithms against geometrical distortions. An adaptive blind watermarking scheme utilizing neural network for synchronization is proposed in this paper,which allows to recover watermark even if the image has been subjected to generalized geometrical transforms. Through classification of image’s brightness, texture and contrast sensitivity utilizing fuzzy clustering theory and human visual system, more robust watermark is adaptively embedded in DWT domain. In order to register rotation, scaling and translation parameters, feedforward neural network is utilized to learn image geometric pattern represented by six combined low order image moments. The distortion can be inverted after determining the affine distortion applied to the image and watermark can be extracted in a standard way without original image. It only needs a trained neural network. Experimental results demonstrate its advantages over previous method in terms of computational effectiveness and parameter estimation accuracy. It can embed more robust watermark under certain visual distance, and effectively resist JPEG compression, noise and geometric attacks.
基金Project supported in part by the National Natural Science Foundationof China (No. 60504024)the Specialized Research Fund for theDoctoral Program of Higher Education,China (No. 20060335022)+1 种基金theNatural Science Foundation of Zhejiang Province (No. Y106010),China the "151 Talent Project" of Zhejiang Province (Nos.05-3-1013 and 06-2-034),China
文摘This paper investigates the exponential synchronization problem of some chaotic delayed neural networks based on the proposed general neural network model,which is the interconnection of a linear delayed dynamic system and a bounded static nonlinear operator,and covers several well-known neural networks,such as Hopfield neural networks,cellular neural networks(CNNs),bidirectional associative memory(BAM)networks,recurrent multilayer perceptrons(RMLPs).By virtue of Lyapunov-Krasovskii stability theory and linear matrix inequality(LMI)technique,some exponential synchronization criteria are derived.Using the drive-response concept,hybrid feedback controllers are designed to synchronize two identical chaotic neural networks based on those synchronization criteria.Finally,detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws.
基金The project supported by National Natural Science Foundation of China under Grant No. 70571017
文摘In this paper, we investigate coherence resonance (CR) and noise-induced synchronization in Hindmarsh- Rose (HR) neural network with three different types of topologies: regular, random, and small-world. It is found that the additive noise can induce CR in HR neural network with different topologies and its coherence is optimized by a proper noise level. It is also found that as coupling strength increases the plateau in the measure of coherence curve becomes broadened and the effects of network topology is more pronounced simultaneously. Moreover, we find that increasing the probability p of the network topology leads to an enhancement of noise-induced synchronization in HR neurons network.
文摘In this paper, global synchronization is discussed for a general class of delayed neural networks with time-varying and distributed delays. Furthermore, the activation func- tions in the neural networks can be different type. Based on the drive-response concept and the Lyapunov stability theorem, some sufficient criteria are obtained to guarantee the global synchronization of the considered models even when input sector nonlinearity caused by physical limitations is presented in response systems. Finally, a typical example is also given to illustrate the effectiveness of the proposed synchronization scheme.
文摘A constructive theorem is established for generalized synchronization (GS) related to C<SUP>1</SUP> diffeomorphic transformations of unidirectionally coupled dynamical arrays. The theorem provides some interpretations about the underlying mechanism of various GS phenomena in nature. As a direct application of the theorem, a chaos-based secure Internet communication scheme is proposed. Moreover, a cellular neural network (CNN) of Chen's chaotic circuits with GS property is designed and studied. Numerical simulation shows that this Chen's CNN has high security and is fast and reliable for secure Internet communications.
文摘The phenomenon of activity synchronization in biological neural network is considered. Simulation of neurons dynamics in the 6-layer neural network with 110 elements in different regimes: regular spikes, chaotic spikes, regular and chaotic bursting, etc was performed. Izhykevich's phenomenological model that displays different types of activity inherent for real biological neurons was used for simulation. Space-time diagram for the entire network and raster plots for the whole structure and for each layer separately were built for visual inspection of neural network activity synchronization. Synchronization coefficients based on cross-correlation times of action potentials for all neurons pairs were calculated for the whole neural system and for each layer separately.
文摘A new method for image segmentation based on pulse neural network is proposed. Every neuron in the network represents one pixel in the image and the network is locally connected. Each group of the neurons that correspond to each object synchronizes while different groups of the neurons oscillate at different period. Applying this period difference, different objects are divided. In addition to simulation, an analysis of the mechanism of the method is presented in this paper.
文摘A new method for image edge detection based on a pulse neural network is proposed in this paper. The network is locally connected. The external input of each neuron of the network is gray value of the corresponding pixel. The synchrony of the neuron and its neighbors is detected by detection neurons. The edge of the image can be read off at minima of the total activity of the detection neurons.
文摘To eliminate harmonic pollution incurred from the static synchronous compensator(STATCOM), a method of applying artificial neural network is presented. When PWM wave is formed based on the harmonic suppression theory, a concave is set on certain angle of the square wave to suppress unnecessary harmonics, by timely and on-line determining the chopping angle corresponding to respective harmonics through artificial neural network, i.e. by setting the position of concave to eliminate corresponding harmonics, the harmonic component on output voltage of the inverter can be improved. To conclude through computer simulation test, the perfect control effect has been proved.
基金Supported by the Sustentation Fund for Young Teachers in Colleges and Universities of Anhui Province under Grant No.2008jq1055Anhui Normal University Fund for Doctor
文摘Effects of coupling distance on synchronization and coherence of chaotic neurons in complex networks arenumerically investigated.We find that it is not beneficial to neurons synchronization if confining the coupling distanceof random edges to a limit d_(max),but help to improve their coherence.Moreover,there is an optimal value of d_(max) atwhich the coherence is maximum.
基金funded by the NSFC program with grant 60672117supported in part by Xian Desheng Scientific Tech. Inc., Xian, P. R. China
文摘In this paper, a novel method of licence plate recognition (LPR) using the vertical traverse density (VTD) and horizontal traverse density (HTD) is presented. The neutral network algorithm using VTD and HTD features is also an innovation. In addition, a so called secondary recognition method which splits characters into different parts is developed. Experimental results show that it is a simple and fast algorithm, which meets the request of real time and nicety performances of LPR and thus has applied value in intelligence transportation system (ITS).