期刊文献+
共找到550篇文章
< 1 2 28 >
每页显示 20 50 100
循环多层感知器神经网络下的符号逻辑推理系统设计分析
1
作者 徐玉清 《数字技术与应用》 2024年第12期63-65,共3页
在现代人工智能领域,符号逻辑推理一直是一个重要的研究方向,它涉及如何利用计算机处理和理解形式化的逻辑表达式。随着深度学习技术的兴起,循环多层感知器(RNN)神经网络作为一种强大的序列处理模型,已经被广泛应用于各种符号逻辑推理... 在现代人工智能领域,符号逻辑推理一直是一个重要的研究方向,它涉及如何利用计算机处理和理解形式化的逻辑表达式。随着深度学习技术的兴起,循环多层感知器(RNN)神经网络作为一种强大的序列处理模型,已经被广泛应用于各种符号逻辑推理任务中,如自然语言处理、知识图谱推理等。 展开更多
关键词 自然语言处理 逻辑表达式 多层感知 神经网络 知识图谱 深度学习技术 逻辑推理 系统设计分析
下载PDF
多元线性回归模型与多层感知器神经网络在铀矿测井泥质含量预测中的应用 被引量:1
2
作者 张喆安 刘龙成 +2 位作者 王书黎 白云龙 谢廷婷 《铀矿地质》 CAS CSCD 2024年第5期1007-1013,共7页
在铀矿资源勘探工作中,泥质含量的测定对于确定地下岩层的性质和砂岩型铀矿床的分布具有重要意义。文章旨在避免常规测井解释计算方法受到希尔奇系数选取准确性的限制,提出了利用多元线性回归模型和多层感知器(MLP,Multilayer Perceptr... 在铀矿资源勘探工作中,泥质含量的测定对于确定地下岩层的性质和砂岩型铀矿床的分布具有重要意义。文章旨在避免常规测井解释计算方法受到希尔奇系数选取准确性的限制,提出了利用多元线性回归模型和多层感知器(MLP,Multilayer Perceptron)神经网络对测井数据进行分析与预测的方法。通过选取某地区的测井数据,采用多元线性回归模型和MLP神经网络进行了泥质含量关系模型的构建和验证。结果显示,多元线性回归模型在泥质含量低层位出现过拟合现象,而MLP神经网络则表现出更高的预测准确性,MLP神经网络在泥质含量预测中优于传统多元线性回归模型,为铀矿勘探中泥质含量的准确预测提供了有效工具,并有望改进现有的泥质含量评价方法。这些研究成果可显著提升测井解释的效率和准确性,对后续铀矿勘探开发工作的开展具有积极影响。 展开更多
关键词 铀矿测井 泥质含量 多元线性回归模型 多层感知神经网络
下载PDF
结合卷积神经网络与多层感知机的渐进式多阶段图像去噪算法 被引量:1
3
作者 薛金强 吴秦 《计算机科学》 CSCD 北大核心 2024年第4期243-253,共11页
现有基于深度学习的图像去噪方法中,在网络架构层面存在单阶段网络特征表达能力不足而难以在复杂场景下重构清晰图像,以及多阶段网络内部特征连接不紧密而容易丢失原始图像细节的问题。在基础构建块层面,存在卷积层难以处理较大噪声级... 现有基于深度学习的图像去噪方法中,在网络架构层面存在单阶段网络特征表达能力不足而难以在复杂场景下重构清晰图像,以及多阶段网络内部特征连接不紧密而容易丢失原始图像细节的问题。在基础构建块层面,存在卷积层难以处理较大噪声级别下的跨层次特征,以及全连接层难以捕获图像邻域空间细节的问题。为解决以上问题,从两方面提出解决方法:一方面,在架构层面提出新颖的跨阶段门控特征融合,从而更好地连接一阶段网络的浅层特征与二阶段的深层特征,促进信息流的交互并使得去噪网络内部关联更为紧密,同时避免丢失原始像素细节;另一方面,在基础构建块层面提出结合卷积神经网络和多层感知机特性的双轴特征偏移块,作用于低分辨率多通道数的特征图,从而缓解卷积网络在复杂噪声场景下难以捕获跨层次特征依赖关系的问题,对于高分辨率、少通道数的特征图,使用卷积网络以充分提取噪声图像的空间邻域依赖关系。大量定量与定性实验表明,所提算法在真实世界图像去噪和高斯噪声去除任务中,都以较小的参数量和计算代价取得了最佳的PSNR和SSIM。 展开更多
关键词 图像处理 图像去噪 深度学习 卷积神经网络 多层感知 特征融合
下载PDF
Koopman原理内嵌MLP神经网络模型驱动的电力系统非线性振荡特征分析方法
4
作者 周一辰 李金泽 +3 位作者 李永刚 陈鹏伟 郭通 孙浩潮 《电力自动化设备》 EI CSCD 北大核心 2024年第10期132-139,共8页
针对电力系统非线性动态特性表征与物理机理融合不清晰、精度低的问题,提出了一种Koopman原理内嵌多层感知机(MLP)神经网络模型驱动的电力系统非线性特性表征与分析方法。阐明了Koopman算子的基本原理,分析了Koopman算子在非线性系统时... 针对电力系统非线性动态特性表征与物理机理融合不清晰、精度低的问题,提出了一种Koopman原理内嵌多层感知机(MLP)神经网络模型驱动的电力系统非线性特性表征与分析方法。阐明了Koopman算子的基本原理,分析了Koopman算子在非线性系统时序演化中的作用。采用MLP神经网络构建编码、解码映射,进而形成Koopman原理内嵌的神经网络深度学习模型,通过深度学习实现非线性系统“编码映射-线性演化-解码映射”3种结构的演化逼近。分析了将所提方法应用于电力系统动态特性分析的物理机理,建立了所提方法的求解与应用流程。通过单机与4机系统算例对所提方法进行对比验证,结果表明所提方法可以精确表征平衡点稳定域内的系统动态过程,可用于电力系统非线性振荡动态特性解析。 展开更多
关键词 电力系统 非线性振荡 Koopman算子理论 多层感知神经网络 科学人工智能
下载PDF
基于图神经网络的多层银企网络融合研究
5
作者 李珊 王林娜 +1 位作者 高丁佳 宣海波 《计算机与现代化》 2024年第5期27-32,共6页
针对金融行业内潜在系统性风险难以精准识别问题,基于直接系统性风险传染渠道的借贷数据以及间接渠道的互联网文本信息,构建多层银企网络,并利用图卷积神经网络(GCN)设计多层银企网络融合模型,根据融合网络量化评估29家银行和75家房地... 针对金融行业内潜在系统性风险难以精准识别问题,基于直接系统性风险传染渠道的借贷数据以及间接渠道的互联网文本信息,构建多层银企网络,并利用图卷积神经网络(GCN)设计多层银企网络融合模型,根据融合网络量化评估29家银行和75家房地产机构的不同渠道系统性风险传染过程。实验结果表明,在多层金融网络融合任务上,本文融合模型的准确率达到0.8559,优于对比模型。融合网络分析表明,多层网络共同冲击下的银企系统性风险传染能力明显大于单一或者2层网络的系统性风险,且基于间接渠道的企业间网络系统性风险更明显。金融审慎监管应该更多关注文本数据、深度学习等技术对于整合庞大金融资源的能力和有效提高风险监测预警的能力。 展开更多
关键词 多层网络融合 系统性风险传染 图卷积神经网络 文本分析
下载PDF
基于主成分降维及多层感知神经网络的辛烷值预测分析 被引量:3
6
作者 孙金芳 王智文 +1 位作者 王康权 吴静 《广西科技大学学报》 2021年第3期67-73,共7页
辛烷值是评价汽油质量的重要指标,汽油在精制脱硫和降烯烃的过程中,辛烷值普遍出现了损失.建立预测模型来预测辛烷值,帮助企业优化工艺流程进而提高成品油辛烷值的含量具有重大意义.根据某石化企业的精制脱硫装置保留下来的数据进行分析... 辛烷值是评价汽油质量的重要指标,汽油在精制脱硫和降烯烃的过程中,辛烷值普遍出现了损失.建立预测模型来预测辛烷值,帮助企业优化工艺流程进而提高成品油辛烷值的含量具有重大意义.根据某石化企业的精制脱硫装置保留下来的数据进行分析,选取独立且具有代表性的20个变量,基于主成分降维的多层感知神经网络建立辛烷值的预测模型.实验结果表明,当隐藏层的神经元个数为10时,MSE、RMSE、MAE均最小,此时该模型具有较高的预测精度和较好的拟合度.此模型不仅揭示了变量与辛烷值之间的非线性映射关系,同时也为预测辛烷值提供了一种新的思路. 展开更多
关键词 汽油辛烷值 主成分降维 多层感知神经网络 数据降维 辛烷值损失 辛烷值预测
下载PDF
多层局部感知卷积神经网络的高光谱图像分类 被引量:13
7
作者 池涛 王洋 陈明 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第1期103-112,共10页
针对高光谱图像分类中光谱特征的高度非线性问题,提出一种基于多层感知器卷积层和批标准化层的改进卷积神经网络模型,提高模型在光谱域处理的非线性特征提取能力. 该算法通过构建七层网络结构,实现多层局部感知结构,逐个像素对光谱信息... 针对高光谱图像分类中光谱特征的高度非线性问题,提出一种基于多层感知器卷积层和批标准化层的改进卷积神经网络模型,提高模型在光谱域处理的非线性特征提取能力. 该算法通过构建七层网络结构,实现多层局部感知结构,逐个像素对光谱信息开展分析,区分不同目标物的光谱信息,将全光谱段集合作为输入,舍去空间信息,利用动量梯度下降训练算法对多层局部感知卷积神经网络训练,实现对不同目标物体光谱特征的提取与分类. 实验中,采用两组高光谱遥感影像进行对比分析,以Pavia University数据集为例,在3 600个训练样本情况下,测试集为1 800个样本,本文方法正确率为90.23%,LeNet-5正确率为87.94%,Linear-SVM正确率为90.00%;在21 000个训练样本情况下,测试集为全部样本,本文方法正确率为97.23%,LeNet-5正确率为96.64%,Linear-SVM正确率为92.40%. 实验结果表明,在训练集较小的情况下,本文方法优于传统神经网络,能有效提取数据特征,并且在精度上和计算成本上略优于在小样本分类中具有高效和鲁棒性良好的SVM算法. 在大规模训练集时,本文方法表现出良好的学习能力,在分类精度上优于LeNet-5. 本文提出的多层局部感知网络结构增强了对非线性特征的学习能力,无论训练集规模大小,都比传统的SVM和一般的深度学习网络更能有效的利用高光谱图像中的逐像素点的光谱域信息,能有效提高分类精度. 展开更多
关键词 高光谱图像 卷积神经网络 支持向量机 分类 非线性特征 多层局部感知
下载PDF
一种改进的多层感知器神经网络技术 被引量:7
8
作者 杨德义 王赟 +1 位作者 王妙月 赵建庆 《石油物探》 EI CSCD 北大核心 2000年第2期107-116,106,共11页
多层感知器 (multi-layerperceptronnetworks ,MLPN)是一具有多层神经元、前馈、误差反传结构的神经网络 ,它的学习和预测能力受多方面因素的影响。首先我们从理论证明和数值分析的角度研究了传输函数、神经元的数目、网络层数及网络误... 多层感知器 (multi-layerperceptronnetworks ,MLPN)是一具有多层神经元、前馈、误差反传结构的神经网络 ,它的学习和预测能力受多方面因素的影响。首先我们从理论证明和数值分析的角度研究了传输函数、神经元的数目、网络层数及网络误差的迭代方式等与MLPN学习和预测能力的关系 ,对常规的MLPN作了改进 ;然后结合一个理论模型分析的例子 ,讨论了改进的MLPN对非线性函数的学习能力 ;最后 ,以某地野外磁测数据的去噪为实例 ,将本文介绍的神经网络技术用于插值 ,从而达到去噪的目的。 展开更多
关键词 多层感知 神经网络 地理物理勘探
下载PDF
基于降噪自编码器、奇异谱分析和长短期记忆神经网络的空间电力负荷态势感知 被引量:36
9
作者 肖白 肖志峰 +4 位作者 姜卓 赵栩 阚中锋 綦雪松 白乙然 《中国电机工程学报》 EI CSCD 北大核心 2021年第14期4858-4867,共10页
精准的空间电力负荷态势感知结果是配电网精益化规划的基础。随着配电网中可采集负荷数据深度和广度的增加,如何运用这些数据实现对空间电力负荷精准的态势感知具有重要意义。该文提出一种基于降噪自编码器、奇异谱分析和长短期记忆神... 精准的空间电力负荷态势感知结果是配电网精益化规划的基础。随着配电网中可采集负荷数据深度和广度的增加,如何运用这些数据实现对空间电力负荷精准的态势感知具有重要意义。该文提出一种基于降噪自编码器、奇异谱分析和长短期记忆神经网络(denoising autoencoder,singular spectrum analysis and long-short term memory neural networks,DAE-SSA-LSTM)的空间电力负荷态势感知方法。首先在态势觉察阶段,使用降噪自编码器对每个Ⅰ类元胞负荷实测数据分别进行编码提取各自的主要负荷变化特征,并根据该特征进行重构历史元胞负荷数据以降低由于测量、通信等原因造成的噪声干扰;然后在态势理解阶段中运用奇异谱分析方法对态势觉察后的元胞负荷数据进行分解得出周期性较强的低频分量序列和随机性较强的高频分量序列;最后在态势预测阶段采用不同的长短期记忆神经网络模型分别对低频分量和高频分量进行预测,并将两预测结果进行叠加得出目标年的Ⅰ类元胞负荷预测值,在此基础上运用空间电力负荷网格化技术求得基于Ⅱ类元胞的空间电力负荷预测值。实例分析结果表明,该方法相比于其他4种空间电力负荷态势感知方法,具有更高的预测精度。 展开更多
关键词 空间电力负荷态势感知 降噪自编码器 奇异谱分析 长短期记忆神经网络
下载PDF
多层感知器神经网络在机械故障诊断中的应用 被引量:3
10
作者 高洪涛 黄钟岳 陈家骅 《大连理工大学学报》 EI CAS CSCD 北大核心 1997年第6期679-682,共4页
针对BP网络用于复杂机械故障诊断时学习收敛慢、易陷于局部极小点等不足,提出了改进方法较大误差相关修正法,并对各系数进行了研究.结果表明,改进算法拓宽了各系数的取值范围,使网络性能更加平稳,且缩短了训练时间;适用于解决... 针对BP网络用于复杂机械故障诊断时学习收敛慢、易陷于局部极小点等不足,提出了改进方法较大误差相关修正法,并对各系数进行了研究.结果表明,改进算法拓宽了各系数的取值范围,使网络性能更加平稳,且缩短了训练时间;适用于解决多输出节点的复杂故障诊断问题. 展开更多
关键词 神经网络 故障诊断 机械系统 多层感知
下载PDF
基于主成分分析的离散过程神经网络水淹层动态预测方法 被引量:6
11
作者 钟仪华 李榕 +1 位作者 张志银 朱海双 《测井技术》 CAS CSCD 北大核心 2010年第5期432-436,共5页
提出了一种利用主成分分析和离散过程神经网络进行水淹层动态预测的方法,对测井曲线信息随油层厚度变化的离散数据进行主成分分析,减少了离散过程神经网络模型的输入参数,排除了各参数之间的相关性。引入了反映深度变化累积效应的输入... 提出了一种利用主成分分析和离散过程神经网络进行水淹层动态预测的方法,对测井曲线信息随油层厚度变化的离散数据进行主成分分析,减少了离散过程神经网络模型的输入参数,排除了各参数之间的相关性。引入了反映深度变化累积效应的输入参数——测井参数曲线层段的不同油层厚度。据此建立的识别模型能够反映出随含水率的上升、深度不同时测井曲线的变化规律。实例研究表明,提出的方法与BP神经网络识别方法、支持向量机方法相比较具有更快的运算速度和更高的识别精度,能够体现出高含水期水淹层的动态变化特征。 展开更多
关键词 测井曲线 动态预测 水淹识别 主成分分析 离散过程神经网络
下载PDF
基于多层感知器神经网络的波导匹配负载设计 被引量:3
12
作者 田雨波 殷毅敏 +1 位作者 钱鉴 刘云 《电波科学学报》 EI CSCD 2004年第2期143-147,共5页
讨论了多层感知器神经网络 (MLPNN)在矩形波导终端匹配短负载设计中的应用。网络学习过程采用反向传播算法 (BP) ,并对训练和测试用样本进行随机化 ,训练过程中加入动量项 ,网络结构可进行自动调节。对样本进行了线性定标 ,用定标后的... 讨论了多层感知器神经网络 (MLPNN)在矩形波导终端匹配短负载设计中的应用。网络学习过程采用反向传播算法 (BP) ,并对训练和测试用样本进行随机化 ,训练过程中加入动量项 ,网络结构可进行自动调节。对样本进行了线性定标 ,用定标后的样本训练神经网络 ,建立系统模型 ,通过优化神经网络相应参数成功实现了矩形波导H面T型结构的终端短小匹配负载的结构设计。 展开更多
关键词 多层感知 神经网络 波导匹配负载设计 结构设计 反向传播算法
下载PDF
基于全局相关性网络的文物安防复合感知数据融合分析
13
作者 项俊 农高峰 李旭锋 《中南民族大学学报(自然科学版)》 CAS 2025年第1期85-95,共11页
传感器感知技术在文物安防领域得到了广泛应用.然而,由于文物安防场景的复杂性,基于单一线索感知的装备监测误报率较高,制约了要地保护的智能化应用推广.提出了一种装备复合感知数据融合分析方法,设计基于自注意力机制的全局相关性神经... 传感器感知技术在文物安防领域得到了广泛应用.然而,由于文物安防场景的复杂性,基于单一线索感知的装备监测误报率较高,制约了要地保护的智能化应用推广.提出了一种装备复合感知数据融合分析方法,设计基于自注意力机制的全局相关性神经网络,对要地多传感器异常事件的联动触发规律进行时空域建模,实现多传感器数据的联合优化和互补,提升系统状态监测精度.在三星堆祭祀坑示范地测试结果表明:融合了多种传感器数据的成套复合装备误报率从原来的10.24%下降为1.10%,验证了所提方法的有效性. 展开更多
关键词 文物安防 复合感知 融合分析 神经网络
下载PDF
基于人工神经网络——多层感知器(MLP)的遥感影像分类模型 被引量:25
14
作者 韩玲 《测绘通报》 CSCD 北大核心 2004年第9期29-30,42,共3页
新一代遥感信息分类方法的应用,主要是将近年来发展起来的人工神经网络、模糊理论、人工智能等技术用于遥感信息分类,从算法上改进分类的精度。论述人工神经网络中的多层感知器(MLP)的基本思想,结合实例,用多层感知器(MLP)方法对单源及... 新一代遥感信息分类方法的应用,主要是将近年来发展起来的人工神经网络、模糊理论、人工智能等技术用于遥感信息分类,从算法上改进分类的精度。论述人工神经网络中的多层感知器(MLP)的基本思想,结合实例,用多层感知器(MLP)方法对单源及多源融合遥感影像进行了分类,并与各种分类方法的结果进行比较。 展开更多
关键词 人工神经网络 多层感知 MLP 遥感影像 融合影像
下载PDF
小波分析与Kohonen神经网络方法在埋地管道防护层缺陷现场检测中的应用 被引量:2
15
作者 高志明 王守琰 宋诗哲 《腐蚀科学与防护技术》 CAS CSCD 北大核心 2001年第z1期464-466,共3页
对埋地管道防护层进行现场测试 ,以连续小波变换提取正弦电流激励响应中特定频率的信息 ,建立了Ko hoen神经网络方法评价防护层状态的适合于现场检测的智能模型 ,并对埋地模拟管道及大港油田港沧输气管线管道防护层状态进行判断 。
关键词 小波分析 KOHONEN神经网络 防护
下载PDF
因子分析与多层神经网络组合的酒驾辨识模型研究 被引量:3
16
作者 孙一帆 张敬磊 王丝丝 《中国安全科学学报》 CAS CSCD 北大核心 2017年第7期127-132,共6页
为准确辨识驾驶员酒驾行为以及酒驾状态水平,提高酒驾治理效率,通过人因工程试验和驾驶模拟试验,采集并预处理驾驶员在正常、饮酒、醉酒3种驾驶状态下的驾驶行为数据(包括驾驶员的人、车、环境数据);对原始参数进行因子分析,提取特征参... 为准确辨识驾驶员酒驾行为以及酒驾状态水平,提高酒驾治理效率,通过人因工程试验和驾驶模拟试验,采集并预处理驾驶员在正常、饮酒、醉酒3种驾驶状态下的驾驶行为数据(包括驾驶员的人、车、环境数据);对原始参数进行因子分析,提取特征参数并将其作为多层神经网络的输入向量,训练多层神经网络,建立基于因子分析和多层神经网络的酒驾行为辨识模型;选取75组测试样本数据输入模型,将模型的输出结果与实际情况比较,验证模型的有效性。研究表明:该模型的训练时间为0.905 s,最优验证均方误差(MSE)为0.034,识别准确率达92.41%,用该模型能较为快速、准确地识别酒后驾驶行为。 展开更多
关键词 酒后驾驶 驾驶行为 特征参数 因子分析 多层神经网络
下载PDF
基于多层感知器神经网络的小微企业信贷风险研究 被引量:7
17
作者 周驷华 王素南 《现代管理科学》 CSSCI 北大核心 2015年第9期45-48,共4页
文章以多层感知器神经网络算法为基础,对某小贷公司的小微企业信贷数据库中的信贷记录进行了信贷评估,并将该结果与决策向量机、线性判别、二次判别和逻辑回归等数据挖掘方法进行了比较。分析结果表明,从总体上看,多重感知器神经网络算... 文章以多层感知器神经网络算法为基础,对某小贷公司的小微企业信贷数据库中的信贷记录进行了信贷评估,并将该结果与决策向量机、线性判别、二次判别和逻辑回归等数据挖掘方法进行了比较。分析结果表明,从总体上看,多重感知器神经网络算法优于传统的基于参数的分类方法,即多层感知器神经网络算法拥有相对较高的ROC曲线下面积和较低的预期错误分类成本。更进一步,在研究所采用的4种MLP算法中,基于BFGS Quasi-Newton训练算法的MLP表现最为出色,可以作为金融机构进行小微信贷风险评估的辅助决策模型。 展开更多
关键词 多层感知神经网络 小微企业 信贷评估 数据挖掘 辅助决策模型
下载PDF
基于动力有限元分析和神经网络技术的含分层复合材料层合板的损伤诊断 被引量:2
18
作者 庄小燕 陈浩然 《玻璃钢/复合材料》 CAS CSCD 2004年第5期3-6,共4页
本文基于作者提出的含层间分层损伤层合板的动力有限元分析模型和方法 ,计算了分层长度和位置对含层间分层损伤层合板结构的固有频率的影响 ,然后应用MATLAB的神经网络工具箱建立了人工神经网络 ,通过典型结构的仿真结果比较 ,证明了采... 本文基于作者提出的含层间分层损伤层合板的动力有限元分析模型和方法 ,计算了分层长度和位置对含层间分层损伤层合板结构的固有频率的影响 ,然后应用MATLAB的神经网络工具箱建立了人工神经网络 ,通过典型结构的仿真结果比较 ,证明了采用有限元动力分析和BP网络技术相结合的方法是一种可用于复合材料层合板的分层损伤诊断的有效方法。 展开更多
关键词 动力有限元分析 神经网络 复合材料合板 损伤诊断
下载PDF
多层前馈神经网络在客户流失分析中的应用 被引量:2
19
作者 叶孝明 梁祺 《物流科技》 2006年第6期72-74,共3页
本文研究了多层前馈神经网络原理及其后向传播算法,然后结合一个实例构建了客户流失分析的多层前馈神经网络模型,实验表明将该模型用于客户流失分析是可行的。
关键词 多层前馈神经网络 BP算法 客户流失分析
下载PDF
多层卷积神经网络深度学习算法可移植性分析 被引量:3
20
作者 肖堃 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2020年第3期420-424,共5页
在现实环境下,出现恶意用户或攻击者对机器学习算法的攻击;在应用过程中,机器学习算法也会受到物体形状、位移、尺度、光照、背景等因素的影响。针对这些使用过程中所产生的安全性问题,本文提出了基于多层卷积神经网络深度学习算法的图... 在现实环境下,出现恶意用户或攻击者对机器学习算法的攻击;在应用过程中,机器学习算法也会受到物体形状、位移、尺度、光照、背景等因素的影响。针对这些使用过程中所产生的安全性问题,本文提出了基于多层卷积神经网络深度学习算法的图像识别方法,并对其可移植性进行分析,通过对抗性训练提高模型泛化能力来防御对抗样例攻击。针对可用性攻击,在前向传播过程中,采用训练好的多层卷积神经网络深度学习模型自动提取输入图像特征,并利用模型权值共享、更新、下采样等操作对输入图像做降采样处理,降低计算复杂度;在反向传播过程中,利用delta法则和Fisher准则,以及基于类内距离和类间距离的能量约束函数实时调整多层卷积神经网络深度学习模型参数,计算模型输出层各个输出单元的残差,使模型权值能够更加快速收敛到有利于图像识别的最优值。测试结果表明:多层卷积神经网络深度学习算法在图像识别领域的应用具有识别准确率和鲁棒性较高,耗时较短的优点,从理论和实验2方面证明了算法的可移植性。 展开更多
关键词 多层卷积神经网络 深度学习算法 可移植性 分析 图像识别 拟合效果 delta法则 FISHER准则
下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部