期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
多频率系统动态插值神经网络软测量建模 被引量:7
1
作者 吴瑶 罗雄麟 袁志宏 《化工进展》 EI CAS CSCD 北大核心 2009年第8期1323-1327,共5页
针对某些化工过程关键变量难以在线测量的问题,提出了一种基于多采样率系统的时间序列神经网络的软测量建模方法,建立了动态插值神经网络模型,并利用增强粒子群算法实现了网络参数的优化。将此方法用于实验室模拟建模,实现了变量的在线... 针对某些化工过程关键变量难以在线测量的问题,提出了一种基于多采样率系统的时间序列神经网络的软测量建模方法,建立了动态插值神经网络模型,并利用增强粒子群算法实现了网络参数的优化。将此方法用于实验室模拟建模,实现了变量的在线预估,并对网络的训练效果和泛化性能进行了分析,表明其建模效果明显优于普通静态神经网络。 展开更多
关键词 动态插值神经网络 粒子群优化 软测量
下载PDF
单调RBF神经网络的逼近性分析 被引量:1
2
作者 徐勇 陈增强 袁著祉 《系统工程》 CSCD 北大核心 2004年第8期5-9,共5页
针对工程中输入输出呈单调关系系统首先提出单调径向基神经网络,然后给出单调性条件定理,并证明用单调径向基神经网络插值可以逼近紧致集上任意单输入单输出的单调函数。
关键词 单调径向基神经网络 构造理论 单调径向基神经网络插值
下载PDF
一类三层前向折线模糊神经网络的构造 被引量:3
3
作者 李丹 孙刚 王贵君 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期55-59,共5页
为克服模糊数运算的复杂性引入了折线模糊数的概念,并应用其优良性质和折线模糊值函数的表示定理,通过插值神经网络的构造方法获得了一类三层前向折线模糊神经网络,证明了该折线模糊神经网络是连续折线模糊值函数的泛逼近器.
关键词 折线模糊数 折线模糊值函数 插值神经网络 折线模糊神经网络 泛逼近
下载PDF
基于虚拟线圈和卷积神经网络的多层同时激发图像重建 被引量:4
4
作者 王婉婷 苏适 +2 位作者 贾森 梁栋 王海峰 《波谱学杂志》 CAS 北大核心 2020年第4期407-421,共15页
本文提出一种基于虚拟共轭线圈(Virtual Coil Concept,VCC)技术和k空间插值鲁棒人工神经网络(Robust Artificial-neural-networks for k-space Interpolation,RAKI)的图像重建方法,用于磁共振多层同时激发成像(Simultaneous Multi-Slice... 本文提出一种基于虚拟共轭线圈(Virtual Coil Concept,VCC)技术和k空间插值鲁棒人工神经网络(Robust Artificial-neural-networks for k-space Interpolation,RAKI)的图像重建方法,用于磁共振多层同时激发成像(Simultaneous Multi-Slice imaging,SMS),该方法能够有效提升重建图像的质量,被命名为VIRGINIA(VIRtual conjuGate colls Neural-networks InterpolAtion).为了得到更高质量的SMS图像,本文提出的VIRGINIA方法利用磁共振线圈数据的复数共轭对称性质扩展了SMS所获取的多通道数据,并将扩展后的数据用于RAKI网络的训练,利用训练后的网络实现高质量的SMS图像重建.本文将VIRGINIA方法和其他SMS图像重建方法(RAKI和Slice-GRAPPA方法)进行了对比,并采用结构相似指数(Structural Similarity Index,SSIM)、峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)和均方根误差(Root Mean Square Error,RMSE)对不同方法的重建图像进行了量化对比分析.结果显示,在相同的SMS加速倍数下,使用VIRGINIA方法进行重建的图像质量均好于RAKI方法,且远好于传统Slice-GRAPPA方法. 展开更多
关键词 磁共振图像重建 多层同时成像 k空间插值鲁棒人工神经网络(RAKI) 虚拟线圈 卷积神经网络(CNN)
下载PDF
基于数据插值和权重指数的矿井机车无线定位方法 被引量:5
5
作者 杨成 冯琳 +1 位作者 魏振春 卫星 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第11期1331-1334,共4页
文章将基于WLAN的无线定位方法应用于矿井下,针对指纹识别定位算法在训练阶段开销过大的问题,结合矿井巷道一维线状特性,提出了一种基于区域划分的神经网络插值算法和基于信号强度权重指数的定位算法,在提高算法效率的同时,减小了平均... 文章将基于WLAN的无线定位方法应用于矿井下,针对指纹识别定位算法在训练阶段开销过大的问题,结合矿井巷道一维线状特性,提出了一种基于区域划分的神经网络插值算法和基于信号强度权重指数的定位算法,在提高算法效率的同时,减小了平均定位误差。仿真结果表明,相比于传统的指纹识别定位算法,该算法在效率分别提高33%、20%和10%的情况下,定位精度分别提高了9%、15%和23%。 展开更多
关键词 无线局域网 无线定位 信号强度 神经网络插值 权重指数
下载PDF
基于改进大趋势扩散和隐含层插值的虚拟样本生成方法及应用 被引量:5
6
作者 乔俊飞 郭子豪 汤健 《化工学报》 EI CAS CSCD 北大核心 2020年第12期5681-5695,共15页
针对获取复杂工业过程的难以检测质量或环境污染指标数据的时间和经济成本高导致有标记建模样本稀缺的问题,提出了基于改进大趋势扩散和隐含层插值的虚拟样本生成(VSG)方法,并将其应用于城市固废焚烧过程的二英(DXN)排放预测。首先,采... 针对获取复杂工业过程的难以检测质量或环境污染指标数据的时间和经济成本高导致有标记建模样本稀缺的问题,提出了基于改进大趋势扩散和隐含层插值的虚拟样本生成(VSG)方法,并将其应用于城市固废焚烧过程的二英(DXN)排放预测。首先,采用基于子区域欧氏距离改进大趋势扩散(MTD)方法对真实样本输入/输出空间进行扩展;接着,采用等间隔插值方式生成虚拟样本输入,再结合映射模型和删减机制获得虚拟样本输出;然后,采用基于正则化改进的随机权神经网络隐含层插值依次得到虚拟样本输出和输入,再结合扩展空间对虚拟样本进行删减;最后,将上述具有互补性的虚拟样本与原始真实样本进行混合,实现建模数据容量扩充。通过基准数据集和工业过程DXN数据验证了所提方法的有效性和合理性。 展开更多
关键词 大趋势扩散 神经网络隐含层插值 虚拟样本生成 二英排放预测 废物处理 算法 模型
下载PDF
Spatial interpolation method based on integrated RBF neural networks for estimating heavy metals in soil of a mountain region 被引量:1
7
作者 李宝磊 张榆锋 +2 位作者 施心陵 章克信 张俊华 《Journal of Southeast University(English Edition)》 EI CAS 2015年第1期38-45,共8页
A novel spatial interpolation method based on integrated radial basis function artificial neural networks (IRBFANNs) is proposed to provide accurate and stable predictions of heavy metals concentrations in soil at u... A novel spatial interpolation method based on integrated radial basis function artificial neural networks (IRBFANNs) is proposed to provide accurate and stable predictions of heavy metals concentrations in soil at un- sampled sites in a mountain region. The IRBFANNs hybridize the advantages of the artificial neural networks and the neural networks integration approach. Three experimental projects under different sampling densities are carried out to study the performance of the proposed IRBFANNs-based interpolation method. This novel method is compared with six peer spatial interpolation methods based on the root mean square error and visual evaluation of the distribution maps of Mn elements. The experimental results show that the proposed method performs better in accuracy and stability. Moreover, the proposed method can provide more details in the spatial distribution maps than the compared interpolation methods in the cases of sparse sampling density. 展开更多
关键词 integrated radial basis function artificial neuralnetworks spatial interpolation soil heavy metals mountainregion
下载PDF
A Low Resolution Image Restoration Method based on BP Neural Network 被引量:2
8
作者 王明毅 郭明昊 +1 位作者 俎敏敏 冀德刚 《Agricultural Science & Technology》 CAS 2017年第4期687-690,共4页
In order to investigate the restoration of low resolution images, the linear and nonlinear interpolation methods were applied for the interpolation of the com- mon information matrix obtained from a series of pictures... In order to investigate the restoration of low resolution images, the linear and nonlinear interpolation methods were applied for the interpolation of the com- mon information matrix obtained from a series of pictures, getting the restructuring matrix. The characteristic block with the best restoration effect was determined by analyzing the pixel difference of the common information of each image at the same position. Then the characteristic blocks and their original blocks were used to build and train neural network. Finally, images were restored by the neural network and the differences between pictures were reduced. Experimental results showed that this method could significantly improve the efficiency and precision of algorithm. 展开更多
关键词 Common information matrix INTERPOLATION Neural network Restructuring matrix
下载PDF
Spatial quality evaluation for drinking water based on GIS and ant colony clustering algorithm 被引量:4
9
作者 侯景伟 米文宝 李陇堂 《Journal of Central South University》 SCIE EI CAS 2014年第3期1051-1057,共7页
To develop a better approach for spatial evaluation of drinking water quality, an intelligent evaluation method integrating a geographical information system(GIS) and an ant colony clustering algorithm(ACCA) was used.... To develop a better approach for spatial evaluation of drinking water quality, an intelligent evaluation method integrating a geographical information system(GIS) and an ant colony clustering algorithm(ACCA) was used. Drinking water samples from 29 wells in Zhenping County, China, were collected and analyzed. 35 parameters on water quality were selected, such as chloride concentration, sulphate concentration, total hardness, nitrate concentration, fluoride concentration, turbidity, pH, chromium concentration, COD, bacterium amount, total coliforms and color. The best spatial interpolation methods for the 35 parameters were found and selected from all types of interpolation methods in GIS environment according to the minimum cross-validation errors. The ACCA was improved through three strategies, namely mixed distance function, average similitude degree and probability conversion functions. Then, the ACCA was carried out to obtain different water quality grades in the GIS environment. In the end, the result from the ACCA was compared with those from the competitive Hopfield neural network(CHNN) to validate the feasibility and effectiveness of the ACCA according to three evaluation indexes, which are stochastic sampling method, pixel amount and convergence speed. It is shown that the spatial water quality grades obtained from the ACCA were more effective, accurate and intelligent than those obtained from the CHNN. 展开更多
关键词 geographical information system (GIS) ant colony clustering algorithm (ACCA) quality evaluation drinking water spatial analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部