针对轧机HAGC(Automatic Gauge Control System with Hydraulic Actuator)液压伺服阀系统内泄漏故障危害性较大、隐蔽性强、判定和定位难的问题,提出一种基于WOA-BP(Whale Optimization Algorithm-BP)神经网络的内泄漏故障诊断方法。建...针对轧机HAGC(Automatic Gauge Control System with Hydraulic Actuator)液压伺服阀系统内泄漏故障危害性较大、隐蔽性强、判定和定位难的问题,提出一种基于WOA-BP(Whale Optimization Algorithm-BP)神经网络的内泄漏故障诊断方法。建立轧机HAGC系统仿真模型,可模拟相关故障,获取各类工况数据,并有效提取出故障特征,可解决故障样本数据少、提取难等问题。利用鲸鱼优化算法改进的BP神经网络作为内泄漏故障识别与分类工具,对HAGC系统仿真与运行数据进行学习、识别。经验证,该方法能比较准确诊断HAGC系统内泄漏故障。展开更多
文摘针对轧机HAGC(Automatic Gauge Control System with Hydraulic Actuator)液压伺服阀系统内泄漏故障危害性较大、隐蔽性强、判定和定位难的问题,提出一种基于WOA-BP(Whale Optimization Algorithm-BP)神经网络的内泄漏故障诊断方法。建立轧机HAGC系统仿真模型,可模拟相关故障,获取各类工况数据,并有效提取出故障特征,可解决故障样本数据少、提取难等问题。利用鲸鱼优化算法改进的BP神经网络作为内泄漏故障识别与分类工具,对HAGC系统仿真与运行数据进行学习、识别。经验证,该方法能比较准确诊断HAGC系统内泄漏故障。