期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
紫杉醇类似物抗癌活性构效关系的神经网络模式识别研究 被引量:4
1
作者 许旋 徐志广 罗一帆 《华南师范大学学报(自然科学版)》 CAS 2005年第4期73-80,共8页
经对MM3、MM+、MNDO、PM3几何优化结果进行比较,选用速度最快且精确度较好的MM3分子力学方法计算43个紫杉醇类似物的优势构型,应用MNDO法计算了化合物的电子结构,并用回归分析和BP神经网络模式识别方法寻找其电子结构与抗癌活性的关系.... 经对MM3、MM+、MNDO、PM3几何优化结果进行比较,选用速度最快且精确度较好的MM3分子力学方法计算43个紫杉醇类似物的优势构型,应用MNDO法计算了化合物的电子结构,并用回归分析和BP神经网络模式识别方法寻找其电子结构与抗癌活性的关系.结果表明:(1)紫杉醇类似物及C13侧链的油水分配系数与活性参数间呈抛物线关系,最适油水分配系数Popt=3.14;(2)2-OB z中B z基团的负电荷密度越大,C1、C3原子的正电荷密度越大对活性越有利;(3)R1、R2、1-OH和2-OB z基团可能是药物与受体作用的重要部位.四参数的定量构效关系显著性较好,神经网络模式识别总识别率为98%,可较精确地预测化合物的抗癌活性. 展开更多
关键词 紫杉醇类似物 BP神经网络模式识别 MNDO QSAR
下载PDF
齐家古潜山基岩裂缝的神经网络模式识别 被引量:3
2
作者 孙思敏 朱庆红 彭仕宓 《物探与化探》 CAS CSCD 2007年第2期160-163,共4页
在岩芯裂缝观测基础上,应用岩芯标定测井,分岩性建立了测井解释模型,分析了裂缝发育段在常规测井曲线上的响应特征,并结合钻井泥浆漏失、放空及开发动态资料,识别出典型裂缝段,将其测井响应作为训练样本集,应用神经网络模式识别技术的... 在岩芯裂缝观测基础上,应用岩芯标定测井,分岩性建立了测井解释模型,分析了裂缝发育段在常规测井曲线上的响应特征,并结合钻井泥浆漏失、放空及开发动态资料,识别出典型裂缝段,将其测井响应作为训练样本集,应用神经网络模式识别技术的并行处理、分布式的信息存储、极强的自学习功能和自动调整权值的能力,对齐家古潜山76口井进行了裂缝段的识别,探索出一套综合岩芯、常规测井、测试与动态等信息进行裂缝分布预测的新方法,经钻探证实,效果良好。 展开更多
关键词 齐家古潜山 神经网络模式识别 裂缝 测井解释
下载PDF
神经网络模式识别对金融票据中数字特征的识别方法研究 被引量:4
3
作者 陆锋 伊卫星 袁晓辉 《苏州大学学报(工科版)》 CAS 2003年第4期44-51,共8页
本文采用神经网络模式识别的方法,研究了金融票据中数字等特征的识别问题。对票据的金额数字和身份证数码进行了分割、图像处理和特征提取,并在此基础上用改进的BP网络对其进行了识别。实验结果表明,用此方法能取得比较好的识别效果。
关键词 神经网络模式识别方法 金融票据 数字特征 身份证数码 自动识别 自动处理系统
下载PDF
基于自动编码器和神经网络的人体运动识别 被引量:9
4
作者 司阳 肖秦琨 李兴 《国外电子测量技术》 2018年第1期78-84,共7页
当前传统的人体运动识别是基于卷积神经网络(CNN)的方法,但存在原始数据维数高,利用CPU训练时间长及硬件要求高的缺点。针对以上问题,提出一种由自动编码器与模式识别神经网络(PRNN)组成的识别人体运动的深度神经网络模型。算法分... 当前传统的人体运动识别是基于卷积神经网络(CNN)的方法,但存在原始数据维数高,利用CPU训练时间长及硬件要求高的缺点。针对以上问题,提出一种由自动编码器与模式识别神经网络(PRNN)组成的识别人体运动的深度神经网络模型。算法分为系统学习阶段和动作识别阶段。在系统学习阶段,首先得到每帧的人体轮廓,构建二进制重叠图像作为训练数据,并训练一个自动编码器来提取动作特征;其次,利用所得到的特征通过监督学习训练PRNN;最后建立新的深度神经网络,通过微调获得最佳性能。在动作识别阶段,人体的运动行为序列首先被翻译成二进制重叠图像,然后使用APRNN进行识别。测试结果表明,这种方法具有很好的性能。 展开更多
关键词 动作识别 自动编码器 模式识别神经网络 深度神经网络 二进制重叠图像
下载PDF
模式识别方法概述 被引量:45
5
作者 范会敏 王浩 《电子设计工程》 2012年第19期48-51,共4页
模式识别技术在社会生活和科学研究的许多方面有着巨大的现实意义,己经在许多领域得到了广泛应用。文中就其理论基础与主要方法作了详细的介绍与阐述。分别介绍了统计模式识别、句法结构模式识别、模糊模式识别、人工神经网络模式识别... 模式识别技术在社会生活和科学研究的许多方面有着巨大的现实意义,己经在许多领域得到了广泛应用。文中就其理论基础与主要方法作了详细的介绍与阐述。分别介绍了统计模式识别、句法结构模式识别、模糊模式识别、人工神经网络模式识别、模板匹配模式识别、支持向量机的模式识别。 展开更多
关键词 模式 模式识别 统计模式识别 神经网络模式识别 模板匹配
下载PDF
模式识别方法在地球化学领域中的应用 被引量:2
6
作者 孔令芳 王振平 +1 位作者 张相春 杨玉奇 《河北化工》 2006年第2期44-46,共3页
介绍了模式识别方法主要是神经网络模式识别方法在油气勘测中油气评价、在油气化探以及在沉积微相测井的应用,还介绍了MATLAB中的神经网络工具箱在地球化学领域中的应用等。
关键词 神经网络模式识别 MATLAB 油气评价 油气化探 沉积微相
下载PDF
毛条加工中羊毛品质的模式识别研究
7
作者 刘凤华 黄林军 《毛纺科技》 CAS 北大核心 2003年第2期24-27,共4页
简述了毛纺加工中选择合理羊毛的必要性 ,以及利用神经网络模式识别方法选择适合毛条质量的羊毛的工作原理 ,给出了羊毛品质模式识别系统的开发过程和实现步骤。
关键词 毛条加工 羊毛品质 神经网络模式识别方法 模式识别系统 制条 毛纺
下载PDF
基于模式识别的结构健康监测异常数据诊断 被引量:1
8
作者 高珂 翁顺 +2 位作者 陈志丹 朱宏平 夏勇 《建筑结构学报》 EI CAS CSCD 北大核心 2024年第3期113-122,共10页
实际结构监测中不可避免出现异常数据,干扰结构的安全评估并引起误判。针对实际监测中多类型异常数据检测效率低和检测结果不准确的问题,提出一种基于特征提取和模式识别神经网络(PRNN)的多类型异常数据识别方法。针对不同类型异常数据... 实际结构监测中不可避免出现异常数据,干扰结构的安全评估并引起误判。针对实际监测中多类型异常数据检测效率低和检测结果不准确的问题,提出一种基于特征提取和模式识别神经网络(PRNN)的多类型异常数据识别方法。针对不同类型异常数据的特点建立特征指标集合,通过特征提取将冗长原始样本转化为简短特征向量,显著提高了数据处理和异常检测的效率;进一步引入极坐标化AUCs曲线对多种异常的识别效果进行精确描述,提高了特征指标选取和网络参数调节的优化效率。建立武汉长江航运中心(335 m)健康监测系统,采用该超高层建筑的监测数据对所提方法的精度和效率予以验征。结果表明,基于特征提取和PRNN的多类型异常数据识别方法对6种数据异常的识别准确率达到99.7%,且运算时长仅为深度学习方法的数十分之一。 展开更多
关键词 结构健康监测 异常数据检测 模式识别神经网络 特征提取 极坐标化AUCs曲线
原文传递
计算机智能化图像识别技术综述与展望
9
作者 叶建丞 《科技创新导报》 2020年第32期113-116,共4页
本文对于现有研究缺乏对智能化图像识别发展的论述,同时为现阶段5G与识别技术结合发展提出展望,对图像识别技术的发展历程、概念、识别过程、关键技术等研究进行综述。本文从图像识别技术发展历程出发到目前的实时状况,阐述图像识别技... 本文对于现有研究缺乏对智能化图像识别发展的论述,同时为现阶段5G与识别技术结合发展提出展望,对图像识别技术的发展历程、概念、识别过程、关键技术等研究进行综述。本文从图像识别技术发展历程出发到目前的实时状况,阐述图像识别技术的定义、识别过程,对识别技术中二值化预处理技术、大规模图像数据集以及统计模式识别、神经网络模式识别、非线性降维等图像识别技术进行着重分析,简述图像识别技术在各领域的作用。现流行5G与智能技术结合提高性能,由此提出应用5G与识别技术相结合进行技术优化的想法。 展开更多
关键词 图像处理 数据集 统计模式识别 神经网络模式识别 非线性降维 5G
下载PDF
泌阳凹陷孙岗地区储层测井解释方法研究 被引量:8
10
作者 王鹏 《石油地质与工程》 CAS 2007年第1期31-33,共3页
针对孙岗地区油水关系复杂、以往储层测井解释符合率低的问题,在分析储层岩性、物性、电性、含油性关系的基础上,开展了油、水、干层识别方法研究,建立了孙岗地区油、水、干层的判别标准,在常规图版判别法的基础上,引入φ-S_w模式法和... 针对孙岗地区油水关系复杂、以往储层测井解释符合率低的问题,在分析储层岩性、物性、电性、含油性关系的基础上,开展了油、水、干层识别方法研究,建立了孙岗地区油、水、干层的判别标准,在常规图版判别法的基础上,引入φ-S_w模式法和神经网络模式识别法。综合应用三种解释方法,提高了该区储层测井解释符合率。 展开更多
关键词 测井解释 储层 Ф-Sw模式 神经网络模式识别
下载PDF
地震勘探技术在焉耆盆地勘探开发中的应用 被引量:2
11
作者 孙耀华 《勘探地球物理进展》 2002年第5期55-59,共5页
地震勘探技术可以分为以二维地震为主的地震勘探初期阶段、以地震地层学为主的地震勘探中期阶段、以三维地震为主的地震勘探高级阶段、以地震储层研究为主的开发地震初级阶段和以四维地震为主的开发地震高级阶段。针对不同阶段的地质条... 地震勘探技术可以分为以二维地震为主的地震勘探初期阶段、以地震地层学为主的地震勘探中期阶段、以三维地震为主的地震勘探高级阶段、以地震储层研究为主的开发地震初级阶段和以四维地震为主的开发地震高级阶段。针对不同阶段的地质条件和不同的地质任务 ,选择合理的地震勘探技术可有效提高勘探开发效益。焉耆盆地的勘探开发体现了以地震勘探为主的思路 ,在勘探开发过程中重视了针对不同勘探开发阶段和不同的地质目标选择合理的地震技术 ,因此 ,在早期勘探开发中取得了很好的经济效益。 展开更多
关键词 地震勘探技术 焉耆盆地 勘探开发 应用 油气勘探 神经网络模式识别 相干分析 地震地层学 三维叠前深度偏移
下载PDF
DAMAGE ANALYSIS AND LOCATION OF RUNYANG BRIDGE USING MULTI-LAYER PERCEPTRON 被引量:1
12
作者 杨杰 李爱群 李兆霞 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第1期67-73,共7页
A damage location method using multi-layer perceptron (MLP) is developed to diagnose the cable damage of a real long span cable-stayed bridge. Firstly, the damage patterns are defined based on dynamical calculation.... A damage location method using multi-layer perceptron (MLP) is developed to diagnose the cable damage of a real long span cable-stayed bridge. Firstly, the damage patterns are defined based on dynamical calculation. The analysis of damage pattern reveals that the damage patterns caused by different damage locations have inherent distinctness, while the damage extent only linearly amplifies the damage pattern curves. And 4th, 6th and 7th order frequencies are canceled from the patterns because of their insensitiveness to cable damage. Then a MLP network is designed by trail-error method to describe the 7-D mapping space of damage pattern. Identification results prove that the properly organized MLP can grasp the damage pattern and identify the damage location. 展开更多
关键词 cable-stayed bridges neural networks damage detection pattern recognition
下载PDF
A Hybrid Neural Network for Spatiotemporal Pattern Recognition
13
作者 曹元大 陈一峰 《Journal of Beijing Institute of Technology》 EI CAS 1996年第1期1-6,共6页
A hybrid network is presented for spatio-temporal feature detecting, which is called TS-LM-SOFM. Its top layer is a novel single layer temporal sequence recognizer called TS which can transform sparse temporal sequen... A hybrid network is presented for spatio-temporal feature detecting, which is called TS-LM-SOFM. Its top layer is a novel single layer temporal sequence recognizer called TS which can transform sparse temporal sequential pattern into abstract spatial feature representations. The bottom layer of TS-LM-SOFM, a modified self-organizing feature map, is used as a spatial feature detector. A learning matrix connects the two layers. Experiments show that the hybrid network can well capture the spatio-temporal features of input signals. 展开更多
关键词 neural networks pattern recognition spatio-temporal pattern
下载PDF
BFA BASED NEURAL NETWORK FOR IMAGE COMPRESSION 被引量:4
14
作者 Chu Ying Mi Hua +2 位作者 Ji Zhen Shao Zibo Q. H. Wu 《Journal of Electronics(China)》 2008年第3期405-408,共4页
A novel Bacterial Foraging Algorithm (BFA) based neural network is presented for image compression. To improve the quality of the decompressed images, the concepts of reproduction, elimination and dispersal in BFA are... A novel Bacterial Foraging Algorithm (BFA) based neural network is presented for image compression. To improve the quality of the decompressed images, the concepts of reproduction, elimination and dispersal in BFA are firstly introduced into neural network in the proposed algorithm. Extensive experiments are conducted on standard testing images and the results show that the pro- posed method can improve the quality of the reconstructed images significantly. 展开更多
关键词 Bacterial Foraging Algorithm (BFA) Artificial Neural Network (ANN) Back Propagation(BP) Image compression
下载PDF
Fuzzy Entropy: Axiomatic Definition and Neural Networks Model 被引量:1
15
作者 QINGMing CAOYue HUANGTian-min 《Chinese Quarterly Journal of Mathematics》 CSCD 2004年第3期319-323,共5页
The measure of uncertainty is adopted as a measure of information. The measures of fuzziness are known as fuzzy information measures. The measure of a quantity of fuzzy information gained from a fuzzy set or fuzzy sys... The measure of uncertainty is adopted as a measure of information. The measures of fuzziness are known as fuzzy information measures. The measure of a quantity of fuzzy information gained from a fuzzy set or fuzzy system is known as fuzzy entropy. Fuzzy entropy has been focused and studied by many researchers in various fields. In this paper, firstly, the axiomatic definition of fuzzy entropy is discussed. Then, neural networks model of fuzzy entropy is proposed, based on the computing capability of neural networks. In the end, two examples are discussed to show the efficiency of the model. 展开更多
关键词 neural networks BP networks fuzzy entropy fuzzy set MODEL
下载PDF
2D spiral pattern recognition based on neural network covering algorithm
16
作者 黄国宏 熊志化 邵惠鹤 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第3期330-333,共4页
The main aim for a 2D spiral recognition algorithm is to learn to discriminate between data distributed on two distinct strands in the x-y plane.This problem is of critical importance since it incorporates temporal ch... The main aim for a 2D spiral recognition algorithm is to learn to discriminate between data distributed on two distinct strands in the x-y plane.This problem is of critical importance since it incorporates temporal characteristics often found in real-time applications.Previous work with this benchmark has witnessed poor results with statistical methods such as discriminant analysis and tedious procedures for better results with neural networks.This paper presents a max-density covering learning algorithm based on constructive neural networks which is efficient in terms of the recognition rate and the speed of recognition.The results show that it is possible to solve the spiral problem instantaneously(up to 100% correct classification on the test set). 展开更多
关键词 pattern recognition neural networks max-density covering learning 2D spiral data
下载PDF
Image Segmentation Based on Period Difference of the Oscillation
17
作者 王直杰 张珏 +1 位作者 范宏 柯克峰 《Journal of Donghua University(English Edition)》 EI CAS 2004年第1期68-71,共4页
A new method for image segmentation based on pulse neural network is proposed. Every neuron in the network represents one pixel in the image and the network is locally connected. Each group of the neurons that corresp... A new method for image segmentation based on pulse neural network is proposed. Every neuron in the network represents one pixel in the image and the network is locally connected. Each group of the neurons that correspond to each object synchronizes while different groups of the neurons oscillate at different period. Applying this period difference, different objects are divided. In addition to simulation, an analysis of the mechanism of the method is presented in this paper. 展开更多
关键词 Image segmentation neural network SYNCHRONIZATION
下载PDF
Influence of Blurred Ways on Pattern Recognition of a Scale-Free Hopfield Neural Network
18
作者 常文利 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第1期195-199,共5页
We investigate the influence of blurred ways on pattern recognition of a Barabasi-Albert scale-free Hopfield neural network (SFHN) with a small amount of errors. Pattern recognition is an important function of infor... We investigate the influence of blurred ways on pattern recognition of a Barabasi-Albert scale-free Hopfield neural network (SFHN) with a small amount of errors. Pattern recognition is an important function of information processing in brain. Due to heterogeneous degree of scale-free network, different blurred ways have different influences on pattern recognition with same errors. Simulation shows that among partial recognition, the larger loading ratio (the number of patterns to average degree P/ (k) ) is, the smaller the overlap of SFHN is. The influence of directed (large) way is largest and the directed (small) way is smallest while random way is intermediate between them. Under the ratio of the numbers of stored patterns to the size of the network PIN is less than O. 1 conditions, there are three families curves of the overlap corresponding to directed (small), random and directed (large) blurred ways of patterns and these curves are not associated with the size of network and the number of patterns. This phenomenon only occurs in the SFHN. These conclusions are benefit for understanding the relation between neural network structure and brain function. 展开更多
关键词 scale-free neural network pattern recognition blurred ways
下载PDF
Wear Debris Identification Using Feature Extraction and Neural Network
19
作者 王伟华 马艳艳 +1 位作者 殷勇辉 王成焘 《Journal of Donghua University(English Edition)》 EI CAS 2004年第4期42-45,共4页
A method and results of identification of wear debris using their morphological features are presented. The color images of wear debris were used as initial data. Each particle was characterized by a set of numerical ... A method and results of identification of wear debris using their morphological features are presented. The color images of wear debris were used as initial data. Each particle was characterized by a set of numerical parameters combined by its shape, color and surface texture features through a computer vision system. Those features were used as input vector of artificial neural network for wear debris identification. A radius basis function (RBF) network based model suitable for wear debris recognition was established, and its algorithm was presented in detail. Compared with traditional recognition methods, the RBF network model is faster in convergence, and higher in accuracy. 展开更多
关键词 wear debris CHARACTERIZATION neural network pattern recognition.
下载PDF
MOVING TARGETS PATTERN RECOGNITION BASED ON THE WAVELET NEURAL NETWORK
20
作者 GeGuangying ChenLili XuJianjian 《Journal of Electronics(China)》 2005年第3期321-328,共8页
Based on pattern recognition theory and neural network technology, moving objects automatic detection and classification method integrating advanced wavelet analysis are discussed in detail. An algorithm of moving tar... Based on pattern recognition theory and neural network technology, moving objects automatic detection and classification method integrating advanced wavelet analysis are discussed in detail. An algorithm of moving targets pattern recognition on the combination of inter-frame difference and wavelet neural network is presented. The experimental results indicate that the designed BP wavelet network using this algorithm can recognize and classify moving targets rapidly and effectively. 展开更多
关键词 Moving targets detection Pattern recognition Wavelet neural network Targets classification
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部