期刊文献+
共找到85篇文章
< 1 2 5 >
每页显示 20 50 100
基于自编码器与时域卷积神经网络算法的配电网线损分析
1
作者 刘超 侯人杰 《软件导刊》 2024年第9期63-69,共7页
复杂的配电网环境中存在线损计算精确性、实时性不足的问题,因此提出基于循环神经网络自编码器改进的TCN-BiGRU配电网线损预测方法。选用擅长处理时间序列的TCN神经网络模型作为主干特征提取网络,在TCN中融入BiGRU单元以有效解决梯度消... 复杂的配电网环境中存在线损计算精确性、实时性不足的问题,因此提出基于循环神经网络自编码器改进的TCN-BiGRU配电网线损预测方法。选用擅长处理时间序列的TCN神经网络模型作为主干特征提取网络,在TCN中融入BiGRU单元以有效解决梯度消失问题。在此基础上,结合循环神经网络自编码器对线损异常值进行无监督分类并标记,通过softmax损失函数预测线损率异常原因,并制定相应降损措施,同时利用改进后的TCN-BiGRU算法对线损进行预测及成因分析。实验结果表明,与传统的配电网线损预测方法相比,该线损预测方法的均方根误差相较于传统的EMD-LSTM与PSO-CNN算法分别降低了0.03699和0.00402,在线损成因分析方面的准确率相较于ResNet50与DBN-DNN算法分别提高了1.500%和5.841%,为分布式电源接入后配电网节能降损、实现电网双碳目标提供了科学的参考依据。 展开更多
关键词 循环神经网络编码 TCN-BiGRU线损预测算法 智能电网 线损异常成因分析 台区线损预测
下载PDF
基于自编码神经网络的航空物探遥感数据分类方法研究
2
作者 于刘 《计算机测量与控制》 2024年第3期253-258,共6页
航空物探遥感数据的采集过程中受到电磁波辐射等外界因素的影响,导致航空物探遥感数据分类准确率较低,为此提出基于自编码神经网络的航空物探遥感数据分类方法;根据航空物探对象的基本特征,设置遥感数据的分类标准;通过辐射校正、几何... 航空物探遥感数据的采集过程中受到电磁波辐射等外界因素的影响,导致航空物探遥感数据分类准确率较低,为此提出基于自编码神经网络的航空物探遥感数据分类方法;根据航空物探对象的基本特征,设置遥感数据的分类标准;通过辐射校正、几何纠正、噪声消除等步骤,完成航空物探遥感数据的预处理;构建自编码神经网络,利用自编码神经网络算法,从光谱、形状、纹理等方面提取遥感数据特征,通过特征匹配确定航空物探遥感数据的所属类型;通过分类性能测试实验得出结论:所提方法的全局遥感数据分类成功率和错误率的平均值分别为99.8%和0.6%,局部遥感数据分类的成功率和错误率的平均值分别为99.8%和0.3%,即所提方法在分类性能方面具有明显优势。 展开更多
关键词 编码神经网络 航空数据 物探遥感数据 数据分类
下载PDF
基于自编码卷积神经网络的前列腺TRUS图像分割方法
3
作者 赵兆 《消费电子》 2024年第9期69-71,共3页
前列腺TRUS图像分割方法直接对前列腺TRUS图像特征进行展平,未对前列腺TRUS图像进行灰度均衡化处理,导致分割效果差。本文提出基于自编码卷积神经网络的前列腺TRUS图像分割方法。对前列腺TRUS图像进行灰度均衡化处理,在此基础上基于自... 前列腺TRUS图像分割方法直接对前列腺TRUS图像特征进行展平,未对前列腺TRUS图像进行灰度均衡化处理,导致分割效果差。本文提出基于自编码卷积神经网络的前列腺TRUS图像分割方法。对前列腺TRUS图像进行灰度均衡化处理,在此基础上基于自编码卷积神经网络进行图像特征展平,设计前列腺TRUS图像分割流程实现图像分割,实验结果表明该研究方法能够更准确地识别并分割出前列腺区域,减少将前列腺像素错误分割为背景区域的情况。 展开更多
关键词 编码卷积神经网络 前列腺TRUS图像 图像分割 特征提取 医学图像处理
下载PDF
一种基于降噪自编码神经网络的积雪产品去云方法 被引量:1
4
作者 张永宏 陈帅 +2 位作者 王剑庚 朱灵龙 陈诗伟 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2023年第2期169-179,共11页
目前应用最为广泛的积雪覆盖区域图(SCA)可由中分辨率成像光谱仪(MODIS)获取,常被用于积雪覆盖时空变化的研究中.由于受云遮挡的影响,MODIS积雪产品存在较大区域的数据缺失.为了消除云遮挡的影响,本文构建一种降噪自编码神经网络模型,... 目前应用最为广泛的积雪覆盖区域图(SCA)可由中分辨率成像光谱仪(MODIS)获取,常被用于积雪覆盖时空变化的研究中.由于受云遮挡的影响,MODIS积雪产品存在较大区域的数据缺失.为了消除云遮挡的影响,本文构建一种降噪自编码神经网络模型,建立雪粒径与复杂地形、土地覆盖类型之间的复杂的映射关系,实现云下积雪参数的补全,提高积雪产品的覆盖面积.本文选取开都河流域为研究区域,将MODIS反演得到的积雪产品数据与地形地物数据结合,并通过降噪自编码神经网络(Denoising Autoencoder Artificial Neural Network)、极值雪线法相结合的方法来定量地回归补全高山复杂地形下由于云覆盖导致的积雪缺失数据,从而得到无缺失的逐日雪盖数据.其中,降噪自编码神经网络融合多特征数据,建立地形特征与雪粒径数据之间的非线性映射关系,从而来补全云层下的雪粒径数据;极值雪线法主要用来去除低海拔地区误报值,进一步提高雪盖提取精度.采用MODIS积雪产品对去云结果开展精度验证,本文所提出的去云方法的精度超过86%,有效地提高了雪盖提取精度.因此,本文所提的算法可以有效地去除复杂地形区域的云覆盖. 展开更多
关键词 降噪自编码神经网络 极值雪线法 复杂地形 去云
下载PDF
基于强制稀疏自编码神经网络的作战态势评估方法研究 被引量:21
5
作者 郭圣明 贺筱媛 +1 位作者 吴琳 胡晓峰 《系统仿真学报》 CAS CSCD 北大核心 2018年第3期772-784,800,共14页
针对传统数据挖掘方法无法解决态势评估中防空体系特征自主挖掘和生成机理分析的问题,提出一种基于强制自编码神经网络的态势评估方法。结合大数据与复杂网络技术,构建强制自编码深度学习网络模型,形式化描述体系能力指标之间的级联涌... 针对传统数据挖掘方法无法解决态势评估中防空体系特征自主挖掘和生成机理分析的问题,提出一种基于强制自编码神经网络的态势评估方法。结合大数据与复杂网络技术,构建强制自编码深度学习网络模型,形式化描述体系能力指标之间的级联涌现关系,在战场态势预测分析的基础上,进一步深入分析体系能力生成机理及贡献度,并通过仿真数据对模型进行验证。该模型对体系能力指标涌现的形式化描述,不仅体现了涌现过程的非线性、不确定性等复杂性特征,还赋予指标体系相对明确的物理含义,为辅助指挥员深入认知复杂战场态势提供了可行的方法手段。 展开更多
关键词 态势评估 先验知识 强制稀疏自编码神经网络 涌现效应 贡献度
下载PDF
基于栈式自编码神经网络的包衣单籽粒玉米品种识别 被引量:8
6
作者 李浩光 李卫军 +3 位作者 覃鸿 于丽娜 于云华 逄燕 《农业机械学报》 EI CAS CSCD 北大核心 2017年第S1期422-428,共7页
常规近红外定性识别研究中,玉米籽粒为表皮裸露状态,未经种衣剂覆盖处理,但是在实际农业生产中,为抵御病虫害侵袭,提高玉米种子发芽率,达到保产增产的功效,玉米种子常需经种衣剂包裹处理。玉米种衣剂的类型多样,对近红外光谱具有一定的... 常规近红外定性识别研究中,玉米籽粒为表皮裸露状态,未经种衣剂覆盖处理,但是在实际农业生产中,为抵御病虫害侵袭,提高玉米种子发芽率,达到保产增产的功效,玉米种子常需经种衣剂包裹处理。玉米种衣剂的类型多样,对近红外光谱具有一定的吸收,因此种衣剂对近红外定性识别具有干扰作用。本文针对种衣剂对玉米品种识别准确性影响的问题,提出了一种基于栈式自编码神经网络(SAE)的近红外光谱定性建模方法。首先采用无种衣剂玉米籽粒光谱作为训练集,通过栈式自编码无监督学习算法与softmax分类器构建栈式自编码网络定性分析模型,再利用所建模型对有种衣剂玉米籽粒进行品种识别。实验结果表明,基于SAE的建模方法能够将种衣剂对玉米籽粒识别率的影响降低至3%以内。 展开更多
关键词 玉米 品种识别 栈式自编码神经网络 种衣剂
下载PDF
基于自编码神经网络的高分辨率距离像降维法 被引量:6
7
作者 张建强 汪厚祥 杨红梅 《解放军理工大学学报(自然科学版)》 EI 北大核心 2016年第1期31-37,共7页
为了提高支持向量机(SVM)分类效率,大幅减少以高分辨率距离像(HRRP)功率谱为特征的支持向量机目标识别分类器的计算量,采用自编码神经网络深度学习方法,实现高维、非线性HRRP功率谱的数据降维。在此基础上,提出了Autoencoder-SVM模型,... 为了提高支持向量机(SVM)分类效率,大幅减少以高分辨率距离像(HRRP)功率谱为特征的支持向量机目标识别分类器的计算量,采用自编码神经网络深度学习方法,实现高维、非线性HRRP功率谱的数据降维。在此基础上,提出了Autoencoder-SVM模型,综合利用自编码神经网络的特征提取能力和SVM的分类能力。仿真结果显示,在HRRP功率谱降维方面,自编码神经网络的降维效果远好于核主成分分析和等距映射算法,其降维结果对SVM分类结果影响甚微,但大幅缩短了SVM的计算时间;同时,在隐层节点数相同的情况下,随着隐含层数的增加或者深度的增加,自编码神经网络数据降维或特征提取效果更好。 展开更多
关键词 编码神经网络 高分辨率距离像 功率谱 数据降维
下载PDF
基于稀疏自编码神经网络的肺结节特征提取及良恶性分类 被引量:12
8
作者 巩萍 王姗姗 罗举建 《医疗卫生装备》 CAS 2015年第12期7-10,14,共5页
目的:针对目前计算机辅助诊断中肺结节特征提取单纯依靠人工设计,分类结果存在很大差异这一问题,提出一种新的肺结节特征自动提取及良恶性分类方法。方法:首先通过阈值概率图从肺部CT图像中分割肺结节图像,然后通过一个2层的稀疏自编码... 目的:针对目前计算机辅助诊断中肺结节特征提取单纯依靠人工设计,分类结果存在很大差异这一问题,提出一种新的肺结节特征自动提取及良恶性分类方法。方法:首先通过阈值概率图从肺部CT图像中分割肺结节图像,然后通过一个2层的稀疏自编码神经网络自动提取肺结节图像的特征,最后利用Logistic回归分类器对提取到的特征进行良恶性分类。结果:肺部图像数据库联盟(1ung image database consortium,LIDC)数据库上的实验结果表明,与目前基于人工设计的特征提取方法相比,该提取方法获得了最高的分类精度与曲线下面积(area under curve,AUC)值。结论:稀疏自编码神经网络能够直接从肺结节图像本身自动提取肺结节特征,避免了人工提取及选择的差异性,提高了肺结节良恶性分类的准确度,能够为临床诊断提供参考依据。 展开更多
关键词 肺结节 特征提取 稀疏自编码神经网络 良恶性分类
下载PDF
基于深度卷积自编码神经网络的手写数字识别研究 被引量:23
9
作者 曾文献 孟庆林 郭兆坤 《计算机应用研究》 CSCD 北大核心 2020年第4期1239-1243,共5页
针对提高不同笔体下的手写识别准确率进行了研究,将深度卷积神经网络与自动编码器相结合,设计卷积自编码器网络层数,形成深度卷积自编码神经网络。首先采用双线性插值方法分别对MNIST数据集与10000幅自制中国大学生手写数字图片进行图... 针对提高不同笔体下的手写识别准确率进行了研究,将深度卷积神经网络与自动编码器相结合,设计卷积自编码器网络层数,形成深度卷积自编码神经网络。首先采用双线性插值方法分别对MNIST数据集与10000幅自制中国大学生手写数字图片进行图像预处理,然后使用单一MNIST数据集对深度卷积自编码神经网络进行训练与测试;最后使用MNIST与自制数据集中5000幅图片混合,再次训练该网络,对另外5000幅图片进行测试。实验数据表明,所提深度卷积自编码神经网络在MNIST测试集正确率达到99.37%;且5000幅自制数据集模型测试正确率达99.33%,表明该算法实用性较强,在不同笔体数字上得到了较高的识别准确率,模型准确有效。 展开更多
关键词 卷积自编码神经网络 双线性插值 手写数字识别 深度学习
下载PDF
基于深度降噪自编码神经网络的中国大陆地壳厚度反演 被引量:2
10
作者 程先琼 蒋科植 《地震学报》 CSCD 北大核心 2021年第1期34-47,I0001,共15页
本文采用基于数据驱动的深度降噪自编码网络构建了瑞雷面波群速度、相速度频散特性与地壳厚度的正反演函数关系,并利用最新频散模型反演了中国大陆的地壳厚度。对于神经网络架构体系的评价,除了考虑传统意义上的测试误差、训练误差之外... 本文采用基于数据驱动的深度降噪自编码网络构建了瑞雷面波群速度、相速度频散特性与地壳厚度的正反演函数关系,并利用最新频散模型反演了中国大陆的地壳厚度。对于神经网络架构体系的评价,除了考虑传统意义上的测试误差、训练误差之外,本文还用已知物理原理的正演结果与网络预测结果进行比较;在设计网络构架时,同时考虑地球模型和面波频散的正反演问题,即解码过程对应正演过程,编码过程对应反演过程。另外,针对观测频散数据包含噪声的特点,对训练样本加噪声,使解码器解码出无噪声输入,以达到对观测数据降噪的目的。对网络各种参数多次调试、分析再优化组合,最终获得稳健的神经网络,并据此反演出中国大陆的地壳厚度。本研究结果与已有的不同手段得到的地壳厚度模型的吻合度较高,表明深度降噪自编码神经网络能很好地揭示面波频散与地壳厚度之间的非线性关系,是利用面波频散反演地壳厚度的一种可行的和可信的方法。 展开更多
关键词 深度学习 降噪 编码神经网络 中国大陆 地壳厚度
下载PDF
用于旋转机械状态趋势预测的量子注意力循环编码解码神经网络 被引量:1
11
作者 李锋 程阳洋 +1 位作者 陈勇 汤宝平 《中国机械工程》 EI CAS CSCD 北大核心 2020年第21期2573-2582,共10页
提出了基于量子注意力循环编码解码神经网络(QAREDNN)的旋转机械状态趋势预测方法。在QAREDNN中,引入注意力机制以同时重构QAREDNN的编码器和解码器,使QAREDNN能够充分挖掘和重视重要信息,并抑制冗余信息的干扰,从而获得更好的非线性逼... 提出了基于量子注意力循环编码解码神经网络(QAREDNN)的旋转机械状态趋势预测方法。在QAREDNN中,引入注意力机制以同时重构QAREDNN的编码器和解码器,使QAREDNN能够充分挖掘和重视重要信息,并抑制冗余信息的干扰,从而获得更好的非线性逼近能力;采用量子神经元构建了一种活性值和权值由量子旋转矩阵代替的量子门限循环单元(QGRU),QGRU不仅能够更加精细地遍历解空间,还具有大量的多重吸引子,因此QGRU能代替传统编码器和解码器中的循环单元以提高QAREDNN的泛化能力和响应速度;通过引入Levenberg-Marquardt(LM)法来提高QAREDNN的量子旋转矩阵的旋转角和注意力参数的更新速度。滚动轴承状态趋势预测实例验证了该方法的有效性。 展开更多
关键词 量子注意力循环编码解码神经网络 注意力机制 量子神经 状态趋势预测 旋转机械
下载PDF
一种稀疏降噪自编码神经网络研究 被引量:9
12
作者 张成刚 姜静清 《内蒙古民族大学学报(自然科学版)》 2016年第1期21-25,93,共6页
近年来,基于深度学习的自编码神经网络是数据降维问题研究的热点,数据降维能够有效地消除无关和冗余信息,提高学习数据内在特征的效率.研究了在原始数据预处理时加入噪声,可训练出对输入信息更加鲁棒的表达,从而提升自编码神经网络模型... 近年来,基于深度学习的自编码神经网络是数据降维问题研究的热点,数据降维能够有效地消除无关和冗余信息,提高学习数据内在特征的效率.研究了在原始数据预处理时加入噪声,可训练出对输入信息更加鲁棒的表达,从而提升自编码神经网络模型对输入数据的泛化能力.提出了一种稀疏降噪自编码神经网络(Sparse De-noising Auto-Encoder,SDAE),基于稀疏性的思想,对降噪自编码神经网络加以改进,使得抽象出的特征稀疏表示,更有效的用于数据分类.实验结果表明稀疏降噪自编码神经网络(SDAE)分类准确率要优于传统的自编码神经网络及降噪自编码神经网络. 展开更多
关键词 数据降维 降噪 稀疏 稀疏降噪自编码神经网络
下载PDF
基于自编码神经网络的Single-Pass聚类事件识别算法
13
作者 李芳 戴龙龙 +1 位作者 江志英 李顺子 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第2期81-86,共6页
针对传统Single-Pass聚类算法存在的缺陷,提出了一种基于自编码神经网络的Single-Pass聚类算法。通过多个深层的隐藏层对原始数据进行降维,以更好地提取出原始数据的特征信息;并通过对边缘文本重计算来降低误检率,提高聚类精度。实验结... 针对传统Single-Pass聚类算法存在的缺陷,提出了一种基于自编码神经网络的Single-Pass聚类算法。通过多个深层的隐藏层对原始数据进行降维,以更好地提取出原始数据的特征信息;并通过对边缘文本重计算来降低误检率,提高聚类精度。实验结果表明,该算法相比传统Single-Pass算法具有更高的聚类准确度,解决了聚类结果受数据顺序影响的问题。 展开更多
关键词 主题追踪 编码神经网络 Single-Pass聚类算法
下载PDF
基于栈式降噪自编码神经网络的车牌字符识别 被引量:16
14
作者 贾文其 李明 +1 位作者 朱美强 王军 《计算机工程与设计》 北大核心 2016年第3期751-756,共6页
为解决复杂自然场景下车牌字符受噪声等影响识别困难的问题,提出一种基于栈式降噪自编码神经网络的车牌识别方法。基于降噪自编码模型重构思想自动提取相关特征,通过使用无监督逐层贪婪预训练和有监督微调的方法对深度自编码神经网络进... 为解决复杂自然场景下车牌字符受噪声等影响识别困难的问题,提出一种基于栈式降噪自编码神经网络的车牌识别方法。基于降噪自编码模型重构思想自动提取相关特征,通过使用无监督逐层贪婪预训练和有监督微调的方法对深度自编码神经网络进行训练,对复杂环境下低质量的车牌字符图像具有较好的鲁棒性能。与浅层的机器学习算法、传统栈式自编码神经网络和卷积神经网络相比,栈式降噪自编码神经网络有较好的字符识别性能。基于实际道口电子警察采集的车牌图像测试集的实验结果验证了该方法的有效性。 展开更多
关键词 车牌字符识别 栈式降噪自编码神经网络 重构 逐层贪婪预训练 微调
下载PDF
基于自编码神经网络的半监督联邦学习模型 被引量:2
15
作者 侯坤池 王楠 +3 位作者 张可佳 宋蕾 袁琪 苗凤娟 《计算机应用研究》 CSCD 北大核心 2022年第4期1071-1074,1104,共5页
联邦学习是一种新型的分布式机器学习方法,可以使得各客户端在不分享隐私数据的前提下共同建立共享模型。然而现有的联邦学习框架仅适用于监督学习,即默认所有客户端数据均带有标签。由于现实中标记数据难以获取,联邦学习模型训练的前... 联邦学习是一种新型的分布式机器学习方法,可以使得各客户端在不分享隐私数据的前提下共同建立共享模型。然而现有的联邦学习框架仅适用于监督学习,即默认所有客户端数据均带有标签。由于现实中标记数据难以获取,联邦学习模型训练的前提假设通常很难成立。为解决此问题,对原有联邦学习进行扩展,提出了一种基于自编码神经网络的半监督联邦学习模型ANN-SSFL,该模型允许无标记的客户端参与联邦学习。无标记数据利用自编码神经网络学习得到可被分类的潜在特征,从而在联邦学习中提供无标记数据的特征信息来作出自身贡献。在MNIST数据集上进行实验,实验结果表明,提出的ANN-SSFL模型实际可行,在监督客户端数量不变的情况下,增加无监督客户端可以提高原有联邦学习精度。 展开更多
关键词 联邦学习 半监督学习 隐私保护 编码神经网络
下载PDF
基于稀疏自编码神经网络的产品再设计模块识别方法 被引量:3
16
作者 马斌彬 马红占 +1 位作者 褚学宁 李玉鹏 《上海交通大学学报》 EI CAS CSCD 北大核心 2019年第7期838-843,共6页
提出了基于性能时变数据分析的再设计模块识别方法.利用产品在健康状态下的性能时变数据构建无监督学习的稀疏自编码神经网络(SAENN)模型,以用于健康状态下产品性能数据的特征提取以及产品功能退化程度的评估;将产品在健康状态下的性能... 提出了基于性能时变数据分析的再设计模块识别方法.利用产品在健康状态下的性能时变数据构建无监督学习的稀疏自编码神经网络(SAENN)模型,以用于健康状态下产品性能数据的特征提取以及产品功能退化程度的评估;将产品在健康状态下的性能数据用于训练SAENN模型,使用运行期间的性能时变数据更新产品的状态特征,以反映功能的退化过程;通过对比功能间的退化差异来识别需要再设计模块;同时,以某制造企业水平定向钻产品再设计功能模块的识别为例验证了所提方法的可行性.结果表明,所提出的再设计模块识别方法具有较好的准确性,能够识别需改进的功能模块,识别结果可作为产品再设计的依据. 展开更多
关键词 产品再设计 模块识别 性能时变数据 稀疏自编码神经网络 功能退化
下载PDF
基于栈式自编码神经网络对高光谱遥感图像分类研究 被引量:14
17
作者 张国东 周浩 +2 位作者 方淇 张露 杨峻 《红外技术》 CSCD 北大核心 2019年第5期450-456,共7页
为了有效利用高光谱遥感图像中的波段信息,提高高光谱遥感图像分类的精确度,本文提出了基于栈式自编码神经网络(Stacked Autoencoder,SA)对高光谱遥感图像进行分类。栈式自编码神经网络充分利用高光谱图像中的光谱信息,对其进行相应特... 为了有效利用高光谱遥感图像中的波段信息,提高高光谱遥感图像分类的精确度,本文提出了基于栈式自编码神经网络(Stacked Autoencoder,SA)对高光谱遥感图像进行分类。栈式自编码神经网络充分利用高光谱图像中的光谱信息,对其进行相应特征提取,避免了相邻信息间的相关性和信息的冗余,本方法采用无监督学习和监督学习相结合,既可以像传统方法那样进行降维,简化相关的计算复杂度,同时在分类精度上有很大地提高。 展开更多
关键词 栈式自编码神经网络 高光谱图像 光谱特征 微调
下载PDF
基于自编码神经网络的鬼成像优化方法 被引量:2
18
作者 张思卿 杨风暴 王肖霞 《电子测量技术》 北大核心 2021年第21期77-83,共7页
针对鬼成像重构效果差所导致目标信息难以有效凸显的问题,结合自编码神经网络降噪优势,提出了一种鬼成像优化方法。该方法以手写数字数据集为样本,在对探测数据进行二阶关联获得初始鬼像的基础上,构建了一个降噪网络模型。该网络模型采... 针对鬼成像重构效果差所导致目标信息难以有效凸显的问题,结合自编码神经网络降噪优势,提出了一种鬼成像优化方法。该方法以手写数字数据集为样本,在对探测数据进行二阶关联获得初始鬼像的基础上,构建了一个降噪网络模型。该网络模型采用Leaky ReLU线性激活函数来解决网络的过饱和和单元死亡的问题,并通过10000个测试样本集验证了所提网络模型的有效性。通过对不同采样率下优化前后鬼像的质量进行了对比分析,分析结果表明,优化后综合不同采样率下鬼像的峰值信噪比较CGI、DGI、CSGI分别平均提高87.02%/93.99%、81.97%/85.90%、27.22%/18.16%;对比度较CGI、DGI、CSGI分别平均提高479.03%/363.79%、380.42%/272.91%、38.76%/31.05%。 展开更多
关键词 鬼成像 编码神经网络 采样率 峰值信噪比 重构
下载PDF
基于自编码神经网络建立的搜索信息模型 被引量:2
19
作者 易万 罗晶 +1 位作者 李勇 郭少英 《计算技术与自动化》 2015年第2期117-121,共5页
根据用户搜索历史,将用户关注的信息按标题分类,通过自编码神经网络提取特征值。设定学习样本标题最多为25个汉字,编码方式采用汉字机内码(GBK码)。使用MATLAB工具进行深度学习,将样本在原空间的特征表示变换到一个新的特征空间。
关键词 文本特征 编码神经网络 深度学习 MATLAB
下载PDF
基于堆叠自编码器神经网络的复合电磁检测铁磁性双层套管腐蚀缺陷分类识别方法 被引量:3
20
作者 张曦郁 李勇 +1 位作者 闫贝 敬好青 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2018年第1期72-78,共7页
铁磁性双层套管长期服役于恶劣的工作环境,极易出现腐蚀缺陷,定期为服役中的双层套管进行在线检测十分必要,而对管壁腐蚀缺陷位置的分类识别是管道定量检测与维修的前提和基础,实时准确的套管腐蚀缺陷分类识别能力是决定管道在线检测效... 铁磁性双层套管长期服役于恶劣的工作环境,极易出现腐蚀缺陷,定期为服役中的双层套管进行在线检测十分必要,而对管壁腐蚀缺陷位置的分类识别是管道定量检测与维修的前提和基础,实时准确的套管腐蚀缺陷分类识别能力是决定管道在线检测效率的重要因素。针对这一情况,将脉冲远场涡流和脉冲涡流技术相结合,提出了基于堆叠自编码器神经网络的分类方法。通过仿真和实验选取合适特征量作为输入层,实现了内管外壁腐蚀、外管内壁腐蚀和外管外壁腐蚀的分类,实验整体预判精度可达97.5%,结果表明该方法可对双层套管腐蚀缺陷缺陷实施高效、高精度分类识别。 展开更多
关键词 亚表面腐蚀缺陷 分类识别 铁磁性双层套管 脉冲远场涡流检测 脉冲涡流检测 堆叠自编码神经网络
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部