电池荷电状态(state of charge,SOC)的准确估计是电动汽车合理实施电池管理的前提条件和重要依据。针对目前电动汽车对动力电池SOC估计精度的不断提高这一问题,利用联合估计法对锂电池SOC进行研究。基于Thevenin电池模型与修正的安时积...电池荷电状态(state of charge,SOC)的准确估计是电动汽车合理实施电池管理的前提条件和重要依据。针对目前电动汽车对动力电池SOC估计精度的不断提高这一问题,利用联合估计法对锂电池SOC进行研究。基于Thevenin电池模型与修正的安时积分算法,推导出了锂电池的输出方程以及状态空间模型,通过采集实验过程中的相关数据并应用递推最小二乘法对电池模型参数作出辨识。分析了扩展卡尔曼滤波(EKF)算法以及自适应BP神经网络算法的原理,联合两种算法并在此基础上提出了自适应BP-EKF算法(ABP-EKF)。运用所提出的算法对锂离子电池SOC进行联合估计,最后通过对比ABP-EKF与EKF两种算法估计锂电池SOC的数据,研究结果表明:所提出ABP-EKF算法相比于EKF算法在均值误差项与均方根误差项分别减少了3.9%和3.79%。展开更多
A novel adaptive support vector regression neural network (SVR-NN) is proposed, which combines respectively merits of support vector machines and a neural network. First, a support vector regression approach is appl...A novel adaptive support vector regression neural network (SVR-NN) is proposed, which combines respectively merits of support vector machines and a neural network. First, a support vector regression approach is applied to determine the initial structure and initial weights of the SVR-NN so that the network architecture is easily determined and the hidden nodes can adaptively be constructed based on support vectors. Furthermore, an annealing robust learning algorithm is presented to adjust these hidden node parameters as well as the weights of the SVR-NN. To test the validity of the proposed method, it is demonstrated that the adaptive SVR-NN can be used effectively for the identification of nonlinear dynamic systems. Simulation results show that the identification schemes based on the SVR-NN give considerably better performance and show faster learning in comparison to the previous neural network method.展开更多
To solve the problem of altitude control of a tilt tri-rotor unmanned aerial vehicle(UAV)in the transition mode,this study presents a grey wolf optimization(GWO)based neural network adaptive control scheme for a tilt ...To solve the problem of altitude control of a tilt tri-rotor unmanned aerial vehicle(UAV)in the transition mode,this study presents a grey wolf optimization(GWO)based neural network adaptive control scheme for a tilt trirotor UAV in the transition mode.Firstly,the nonlinear model of the tilt tri-rotor UAV is established.Secondly,the tilt tri-rotor UAV altitude controller and attitude controller are designed by a neural network adaptive control method,and the GWO algorithm is adopted to optimize the parameters of the neural network and the controllers.Thirdly,two altitude control strategies are designed in the transition mode.Finally,comparative simulations are carried out to demonstrate the effectiveness and robustness of the proposed control scheme.展开更多
文摘电池荷电状态(state of charge,SOC)的准确估计是电动汽车合理实施电池管理的前提条件和重要依据。针对目前电动汽车对动力电池SOC估计精度的不断提高这一问题,利用联合估计法对锂电池SOC进行研究。基于Thevenin电池模型与修正的安时积分算法,推导出了锂电池的输出方程以及状态空间模型,通过采集实验过程中的相关数据并应用递推最小二乘法对电池模型参数作出辨识。分析了扩展卡尔曼滤波(EKF)算法以及自适应BP神经网络算法的原理,联合两种算法并在此基础上提出了自适应BP-EKF算法(ABP-EKF)。运用所提出的算法对锂离子电池SOC进行联合估计,最后通过对比ABP-EKF与EKF两种算法估计锂电池SOC的数据,研究结果表明:所提出ABP-EKF算法相比于EKF算法在均值误差项与均方根误差项分别减少了3.9%和3.79%。
文摘A novel adaptive support vector regression neural network (SVR-NN) is proposed, which combines respectively merits of support vector machines and a neural network. First, a support vector regression approach is applied to determine the initial structure and initial weights of the SVR-NN so that the network architecture is easily determined and the hidden nodes can adaptively be constructed based on support vectors. Furthermore, an annealing robust learning algorithm is presented to adjust these hidden node parameters as well as the weights of the SVR-NN. To test the validity of the proposed method, it is demonstrated that the adaptive SVR-NN can be used effectively for the identification of nonlinear dynamic systems. Simulation results show that the identification schemes based on the SVR-NN give considerably better performance and show faster learning in comparison to the previous neural network method.
文摘To solve the problem of altitude control of a tilt tri-rotor unmanned aerial vehicle(UAV)in the transition mode,this study presents a grey wolf optimization(GWO)based neural network adaptive control scheme for a tilt trirotor UAV in the transition mode.Firstly,the nonlinear model of the tilt tri-rotor UAV is established.Secondly,the tilt tri-rotor UAV altitude controller and attitude controller are designed by a neural network adaptive control method,and the GWO algorithm is adopted to optimize the parameters of the neural network and the controllers.Thirdly,two altitude control strategies are designed in the transition mode.Finally,comparative simulations are carried out to demonstrate the effectiveness and robustness of the proposed control scheme.