Effective methods of enhancing the fault-tolerance property are proposed for two kinds of associative memory (AM) neural network (NN) used in high voltage transmission line fault diagnosis. For feedforward NN (FNN),t...Effective methods of enhancing the fault-tolerance property are proposed for two kinds of associative memory (AM) neural network (NN) used in high voltage transmission line fault diagnosis. For feedforward NN (FNN),the conception of 'fake attaction region' is presented to expand the attraction region artificially,and for the feedback Hopfield bidirectional AM NN (BAM-NN),the measure to add redundant neurons is taken to enhance NN's memory capacity and fault-tolerance property. Study results show that the NNs built not only can complete fault diagnosis correctly but also have fairly high fault-tolerance ability for disturbed input information sequence. Moreover FNN is a more convenient and effective method of solving the problem of power system fault diagnosis.展开更多
The work condition of nuclear power plant (NPP) is very bad, which makes ithas faults easily. In order to diagnose (he faults real time, the fusion diagnosis system is built.The data fusion fault diagnosis system adop...The work condition of nuclear power plant (NPP) is very bad, which makes ithas faults easily. In order to diagnose (he faults real time, the fusion diagnosis system is built.The data fusion fault diagnosis system adopts data fusion method and divides the fault diagnosisinto three levels, which are data fusion level, feature level and decision level. The feature leveluses three parallel neural networks whose structures are the same. The purpose of using neuralnetworks is mainly to get basic probability assignment ( BPA) of D-S evidence theory, and the neuralnetworks in feature level are used for local diagnosis. D-S evidence theory is adopted to integratethe local diagnosis results in decision level. The reactor coolant system is the study object andwe choose 2# steam generator U-tubes break of the reactor coolant system as a diagnostic example.The experiments prove that the fusion diagnosis system can satisfy the fault diagnosis requirementof complicated system, and verify that the fusion fault diagnosis system can realize the faultdiagnosis of NPP on line timely.展开更多
It is necessary to develop an automatic fault diagnosis system to avoid a possible nuclear disaster caused by an inaccurate fault diagnosis in the nuclear power plant by the operator. Because Radial Basis Function Neu...It is necessary to develop an automatic fault diagnosis system to avoid a possible nuclear disaster caused by an inaccurate fault diagnosis in the nuclear power plant by the operator. Because Radial Basis Function Neural Network (RBFNN) has the characteristics of optimal approximation and global approximation. The mixed coding of binary system and decimal system is introduced to the structure and parameters of RBFNN, which is trained in course of the genetic optimization. Finally, a fault diagnosis system according to the frequent faults in condensation and feed water system of nuclear power plant is set up. As a result, Genetic-RBF Neural Network (GRBFNN) makes the neural network smaller in size and higher in generalization ability. The diagnosis speed and accuracy are also improved.展开更多
Accurate fault detection and diagnosis is important for secure and profitable operation of modern power systems.In this paper,an ensemble of conflict-resolving Fuzzy ARTMAP classifiers,known as Probabilistic Multiple ...Accurate fault detection and diagnosis is important for secure and profitable operation of modern power systems.In this paper,an ensemble of conflict-resolving Fuzzy ARTMAP classifiers,known as Probabilistic Multiple Fuzzy ARTMAP with Dynamic Decay Adjustment(PMFAMDDA),for accurate discrimination between normal and faulty operating conditions of a Circulating Water(CW)system in a power generation plant is proposed.The decisions of PMFAMDDA are reached through a probabilistic plurality voting strategy that is in agreement with the Bayesian theorem.The results of the proposed PMFAMDDA model are compared with those from an ensemble of Probabilistic Multiple Fuzzy ARTMAP(PMFAM)classifiers.The outcomes reveal that PMFAMDDA,in general,outperforms PMFAM in discriminating operating conditions of the CW system.展开更多
文摘Effective methods of enhancing the fault-tolerance property are proposed for two kinds of associative memory (AM) neural network (NN) used in high voltage transmission line fault diagnosis. For feedforward NN (FNN),the conception of 'fake attaction region' is presented to expand the attraction region artificially,and for the feedback Hopfield bidirectional AM NN (BAM-NN),the measure to add redundant neurons is taken to enhance NN's memory capacity and fault-tolerance property. Study results show that the NNs built not only can complete fault diagnosis correctly but also have fairly high fault-tolerance ability for disturbed input information sequence. Moreover FNN is a more convenient and effective method of solving the problem of power system fault diagnosis.
文摘The work condition of nuclear power plant (NPP) is very bad, which makes ithas faults easily. In order to diagnose (he faults real time, the fusion diagnosis system is built.The data fusion fault diagnosis system adopts data fusion method and divides the fault diagnosisinto three levels, which are data fusion level, feature level and decision level. The feature leveluses three parallel neural networks whose structures are the same. The purpose of using neuralnetworks is mainly to get basic probability assignment ( BPA) of D-S evidence theory, and the neuralnetworks in feature level are used for local diagnosis. D-S evidence theory is adopted to integratethe local diagnosis results in decision level. The reactor coolant system is the study object andwe choose 2# steam generator U-tubes break of the reactor coolant system as a diagnostic example.The experiments prove that the fusion diagnosis system can satisfy the fault diagnosis requirementof complicated system, and verify that the fusion fault diagnosis system can realize the faultdiagnosis of NPP on line timely.
文摘It is necessary to develop an automatic fault diagnosis system to avoid a possible nuclear disaster caused by an inaccurate fault diagnosis in the nuclear power plant by the operator. Because Radial Basis Function Neural Network (RBFNN) has the characteristics of optimal approximation and global approximation. The mixed coding of binary system and decimal system is introduced to the structure and parameters of RBFNN, which is trained in course of the genetic optimization. Finally, a fault diagnosis system according to the frequent faults in condensation and feed water system of nuclear power plant is set up. As a result, Genetic-RBF Neural Network (GRBFNN) makes the neural network smaller in size and higher in generalization ability. The diagnosis speed and accuracy are also improved.
基金supported by the Fundamental Research Grant Scheme of Ministry of Higher Education,Malaysia(No.6711195)Multi media University and University of Science Malaysia
文摘Accurate fault detection and diagnosis is important for secure and profitable operation of modern power systems.In this paper,an ensemble of conflict-resolving Fuzzy ARTMAP classifiers,known as Probabilistic Multiple Fuzzy ARTMAP with Dynamic Decay Adjustment(PMFAMDDA),for accurate discrimination between normal and faulty operating conditions of a Circulating Water(CW)system in a power generation plant is proposed.The decisions of PMFAMDDA are reached through a probabilistic plurality voting strategy that is in agreement with the Bayesian theorem.The results of the proposed PMFAMDDA model are compared with those from an ensemble of Probabilistic Multiple Fuzzy ARTMAP(PMFAM)classifiers.The outcomes reveal that PMFAMDDA,in general,outperforms PMFAM in discriminating operating conditions of the CW system.