期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
钻井泵液力端故障诊断新方法 被引量:10
1
作者 裴峻峰 张嗣伟 +1 位作者 齐明侠 万广伟 《石油学报》 EI CAS CSCD 北大核心 2009年第4期617-620,共4页
往复泵液力端故障原因及故障与征兆间对应关系复杂,为了全面地利用获取的振动信号资源,得到更全面、准确的诊断结果,将分析得到的幅值域的峭度指标、峰值指标、脉冲指标、裕度指标、波形指标和歪度等6个参数,频域的重心频率、均方根频... 往复泵液力端故障原因及故障与征兆间对应关系复杂,为了全面地利用获取的振动信号资源,得到更全面、准确的诊断结果,将分析得到的幅值域的峭度指标、峰值指标、脉冲指标、裕度指标、波形指标和歪度等6个参数,频域的重心频率、均方根频率、频率标准差等3个参数以及32个小波包分频带能量值作为神经网络输入的备选特征向量,由此形成了液力端综合振动信号特征参数的神经网络诊断系统。为了对网络的性能进行比较,分别构建了BP网络和RBF网络。将上述特征输入向量作不同组合,分别输入该网络并进行训练诊断和效果对比,由此求得了最优诊断系统组合。利用此神经网络诊断系统,对现场实际使用的钻井泵液力端进行了多次的测试分析和调试,证明这种方法对钻井泵液力端的故障诊断是行之有效的,可取得较高的诊断准确率。 展开更多
关键词 钻井泵 液力端 故障诊断 振动信号 特征参数 神经网络诊断系统
下载PDF
APPLICATION OF ASSOCIATIVE MEMORY NEURAL NETWORK IN HIGH VOLTAGE TRANSMISSIONLINE FAULT DIAGNOSIS
2
作者 姜惠兰 孙雅明 《Transactions of Tianjin University》 EI CAS 1999年第1期36-41,共6页
Effective methods of enhancing the fault-tolerance property are proposed for two kinds of associative memory (AM) neural network (NN) used in high voltage transmission line fault diagnosis. For feedforward NN (FNN),t... Effective methods of enhancing the fault-tolerance property are proposed for two kinds of associative memory (AM) neural network (NN) used in high voltage transmission line fault diagnosis. For feedforward NN (FNN),the conception of 'fake attaction region' is presented to expand the attraction region artificially,and for the feedback Hopfield bidirectional AM NN (BAM-NN),the measure to add redundant neurons is taken to enhance NN's memory capacity and fault-tolerance property. Study results show that the NNs built not only can complete fault diagnosis correctly but also have fairly high fault-tolerance ability for disturbed input information sequence. Moreover FNN is a more convenient and effective method of solving the problem of power system fault diagnosis. 展开更多
关键词 neural network power system fault diagnosis fault-tolerance property
下载PDF
Application of data fusion method to fault diagnosis of nuclear power plant 被引量:3
3
作者 XIEChun-li XIAHong LIUYong-kuo 《Journal of Marine Science and Application》 2005年第1期30-33,共4页
The work condition of nuclear power plant (NPP) is very bad, which makes ithas faults easily. In order to diagnose (he faults real time, the fusion diagnosis system is built.The data fusion fault diagnosis system adop... The work condition of nuclear power plant (NPP) is very bad, which makes ithas faults easily. In order to diagnose (he faults real time, the fusion diagnosis system is built.The data fusion fault diagnosis system adopts data fusion method and divides the fault diagnosisinto three levels, which are data fusion level, feature level and decision level. The feature leveluses three parallel neural networks whose structures are the same. The purpose of using neuralnetworks is mainly to get basic probability assignment ( BPA) of D-S evidence theory, and the neuralnetworks in feature level are used for local diagnosis. D-S evidence theory is adopted to integratethe local diagnosis results in decision level. The reactor coolant system is the study object andwe choose 2# steam generator U-tubes break of the reactor coolant system as a diagnostic example.The experiments prove that the fusion diagnosis system can satisfy the fault diagnosis requirementof complicated system, and verify that the fusion fault diagnosis system can realize the faultdiagnosis of NPP on line timely. 展开更多
关键词 neural network D-S evidence theory fusion diagnosis system
下载PDF
Nuclear power plant fault diagnosis based on genetic-RBF neural network 被引量:1
4
作者 SHI Xiao-cheng XIE Chun-ling WANG Yuan-hui 《Journal of Marine Science and Application》 2006年第3期57-62,共6页
It is necessary to develop an automatic fault diagnosis system to avoid a possible nuclear disaster caused by an inaccurate fault diagnosis in the nuclear power plant by the operator. Because Radial Basis Function Neu... It is necessary to develop an automatic fault diagnosis system to avoid a possible nuclear disaster caused by an inaccurate fault diagnosis in the nuclear power plant by the operator. Because Radial Basis Function Neural Network (RBFNN) has the characteristics of optimal approximation and global approximation. The mixed coding of binary system and decimal system is introduced to the structure and parameters of RBFNN, which is trained in course of the genetic optimization. Finally, a fault diagnosis system according to the frequent faults in condensation and feed water system of nuclear power plant is set up. As a result, Genetic-RBF Neural Network (GRBFNN) makes the neural network smaller in size and higher in generalization ability. The diagnosis speed and accuracy are also improved. 展开更多
关键词 geneticalgorithm (GA) RBF neural network nuclear power plant
下载PDF
An Ensemble Application of Conflict-Resolving ART-Based Neural Networks to Fault Detection and Diagnosis 被引量:1
5
作者 Shing-chiang TAN Chee-peng LIM 《Journal of Measurement Science and Instrumentation》 CAS 2011年第4期371-377,共7页
Accurate fault detection and diagnosis is important for secure and profitable operation of modern power systems.In this paper,an ensemble of conflict-resolving Fuzzy ARTMAP classifiers,known as Probabilistic Multiple ... Accurate fault detection and diagnosis is important for secure and profitable operation of modern power systems.In this paper,an ensemble of conflict-resolving Fuzzy ARTMAP classifiers,known as Probabilistic Multiple Fuzzy ARTMAP with Dynamic Decay Adjustment(PMFAMDDA),for accurate discrimination between normal and faulty operating conditions of a Circulating Water(CW)system in a power generation plant is proposed.The decisions of PMFAMDDA are reached through a probabilistic plurality voting strategy that is in agreement with the Bayesian theorem.The results of the proposed PMFAMDDA model are compared with those from an ensemble of Probabilistic Multiple Fuzzy ARTMAP(PMFAM)classifiers.The outcomes reveal that PMFAMDDA,in general,outperforms PMFAM in discriminating operating conditions of the CW system. 展开更多
关键词 fault detection and diagnosis fuzzy ARTMAP dynamic decay adjustment algorithm pluralityvoting circulating water system
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部