期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于模糊神经网络PID的机载蓄电池恒流充电控制
1
作者 丁羿茗 吕瑞强 蒋超 《通信电源技术》 2021年第6期17-20,共4页
分阶段式充电方法因其可靠性高和性价比高等优点被广泛应用于蓄电池的充电过程。分阶段式充电法的质量由其对充电电流及电压的控制精度决定。将模糊控制、神经网络控制以及普通PID控制相结合,系统同时具备了逻辑推理能力和自学习能力,... 分阶段式充电方法因其可靠性高和性价比高等优点被广泛应用于蓄电池的充电过程。分阶段式充电法的质量由其对充电电流及电压的控制精度决定。将模糊控制、神经网络控制以及普通PID控制相结合,系统同时具备了逻辑推理能力和自学习能力,可以在线控制调整蓄电池充电电流等参数。通过实验和仿真验证证明了此方法可以有效减小电流波动范围,使充电电流更快地稳定到目标电流。 展开更多
关键词 智能控制 模糊神经网络 PID控制 神经网络辨识模型
下载PDF
复杂机械结构非线性运行特征分析 被引量:2
2
作者 熊晓燕 庞晓丽 陈冬冰 《振动.测试与诊断》 EI CSCD 北大核心 2011年第2期237-240,270,共4页
提出一种适用于工程实测ICP振动加速度计信号的积分方法,该方法可由振动加速度信号得到较精确的振动速度和位移信号,实现了基于振动信号的相空间分析,有效识别了复杂机械结构的非线性时域运行特征。为了解复杂机械结构的非线性频域运行... 提出一种适用于工程实测ICP振动加速度计信号的积分方法,该方法可由振动加速度信号得到较精确的振动速度和位移信号,实现了基于振动信号的相空间分析,有效识别了复杂机械结构的非线性时域运行特征。为了解复杂机械结构的非线性频域运行特征,还提出一种基于神经网络辨识模型的频域分析方法,该方法可用于大型振动筛的非线性运行特征分析。 展开更多
关键词 机械结构 非线性 积分 神经网络辨识模型 运行特征
下载PDF
Identification of Hammerstein Model Using Hybrid Neural Networks
3
作者 李世华 李奇 李捷 《Journal of Southeast University(English Edition)》 EI CAS 2001年第1期26-30,共5页
The identification problem of Hammerstein model with extension to the multi input multi output (MIMO) case is studied. The proposed identification method uses a hybrid neural network (HNN) which consists of a mult... The identification problem of Hammerstein model with extension to the multi input multi output (MIMO) case is studied. The proposed identification method uses a hybrid neural network (HNN) which consists of a multi layer feed forward neural network (MFNN) in cascade with a linear neural network (LNN). A unified back propagation (BP) algorithm is proposed to estimate the weights and the biases of the MFNN and the LNN simultaneously. Numerical examples are provided to show the efficiency of the proposed method. 展开更多
关键词 neural networks nonlinear systems identification Hammerstein model
下载PDF
Identification model of multi-layered neural network parameters and its applications in the petroleum production
4
作者 Liu Ranbing Liu Leiming +1 位作者 Zhang Faqiang Li Changhua 《Engineering Sciences》 EI 2008年第2期78-82,共5页
This paper creates a LM (Levenberg-Marquardt) algorithm model which is appropriate to solve the problem about weights value of feedforward neural network. On the base of this model, we provide two applications in the ... This paper creates a LM (Levenberg-Marquardt) algorithm model which is appropriate to solve the problem about weights value of feedforward neural network. On the base of this model, we provide two applications in the oilfield production. Firstly, we simulated the functional relationships between the petrophysical and electrical properties of the rock by neural networks model, and studied oil saturation. Under the precision of data is confirmed, this method can reduce the number of experiments. Secondly, we simulated the relationships between investment and income by the neural networks model, and studied invest saturation point and income growth rate. It is very significant to guide the investment decision. The research result shows that the model is suitable for the modeling and identification of nonlinear systems due to the great fit characteristic of neural network and very fast convergence speed of LM algorithm. 展开更多
关键词 neural networks model relationships between the petrophysical and electrical properties of the rock investment income Levenberg-Marquardt learning algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部