期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
神经网络预估器的试验研究
1
作者 蔡铭辉 杜涛 符曦 《自动化与仪器仪表》 1999年第4期19-21,共3页
0前言近40年来,围绕着如何改善具有时变和大滞后非线性系统的控制品质问题,进行了广泛深入的研究和提出了多种解决方法。例如:史密斯预估控制法、最优控制法、自适应控制法、有效谱控制法、智能采样调节和动态矩阵预报控制等等[... 0前言近40年来,围绕着如何改善具有时变和大滞后非线性系统的控制品质问题,进行了广泛深入的研究和提出了多种解决方法。例如:史密斯预估控制法、最优控制法、自适应控制法、有效谱控制法、智能采样调节和动态矩阵预报控制等等[1]。但是,由于这些方法都比较复杂... 展开更多
关键词 人工神经网络 神经网络预估 试验研究
下载PDF
基于BP神经网络的永磁直线同步电机齿槽力预估器 被引量:5
2
作者 邵波 曹志彤 +1 位作者 陈宏平 何国光 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2006年第7期1281-1284,共4页
为了减小永磁直线同步电机(PMLSM)齿槽力的波动,采用二维电磁场有限元方法,结合动态分网来描述PMLSM定、动子间的相对运动.考虑非线性磁饱和的影响,对槽形尺寸、斜槽、闭口槽、气隙、分数槽等影响下的齿槽力进行了分析.计算结果表明,分... 为了减小永磁直线同步电机(PMLSM)齿槽力的波动,采用二维电磁场有限元方法,结合动态分网来描述PMLSM定、动子间的相对运动.考虑非线性磁饱和的影响,对槽形尺寸、斜槽、闭口槽、气隙、分数槽等影响下的齿槽力进行了分析.计算结果表明,分数槽是有效减小PMLSM齿槽力波动的重要措施.将模拟计算得到的槽形、气隙对齿槽力波动的影响作为神经网络的训练样本,结合动量法和自调节学习规则,构建了基于BP神经网络的齿槽力预估器.通过该预估器,可以在PMLSM设计阶段对槽形尺寸、气隙大小进行合理的选择. 展开更多
关键词 永磁直线同步电机 有限元方法 齿槽力 分数槽 神经网络预估
下载PDF
基于神经网络的单步和多步电弧炉模型的研究与应用 被引量:3
3
作者 陈兵 王华 《现代电子技术》 2003年第2期57-60,共4页
介绍了电弧炉计算机智能控制系统的特点与方法 ,并着重讨论了神经网络预估模型的设计 ,包括遗传算法在建立神经网络模型的应用和神经网络模型实时学习的要求 ,基于此基础对于多步预估进行了讨论和研究。通过实际应用证实该系统具有效率... 介绍了电弧炉计算机智能控制系统的特点与方法 ,并着重讨论了神经网络预估模型的设计 ,包括遗传算法在建立神经网络模型的应用和神经网络模型实时学习的要求 ,基于此基础对于多步预估进行了讨论和研究。通过实际应用证实该系统具有效率高 ,电能消耗低 。 展开更多
关键词 电弧炉 神经网络预估模型 遗传算法 多步预估
下载PDF
基于PSO的神经网络在电弧炉控制中的应用 被引量:2
4
作者 李强 秦发宪 《控制工程》 CSCD 北大核心 2009年第S3期64-67,共4页
针对电弧炉炼钢过程的高度非线性、时变性和不确定性,设计了神经网络预估模块和神经网络控制模块。由于神经网络训练算法很大程度上决定了神经网络非线性模型辨识能力的强弱,故本控制系统采用基于粒子群算法的神经网络进行离线训练来建... 针对电弧炉炼钢过程的高度非线性、时变性和不确定性,设计了神经网络预估模块和神经网络控制模块。由于神经网络训练算法很大程度上决定了神经网络非线性模型辨识能力的强弱,故本控制系统采用基于粒子群算法的神经网络进行离线训练来建立控制模型,极大地提高了神经网络映射能力和网络训练速度,保证了高品质的控制性能。使用训练好的神经网络优化工作设定点,实现了电弧炉炼钢过程的最优化控制。此外,系统在神经网络预估模块的基础上还设计有恒阻抗专家系统,以确保炼钢过程的安全可靠,从而弥补单一智能控制策略的不足。该系统能较好地适应负荷变化和外部干扰,其控制性能优于常规电弧炉控制系统,从而可以节能降耗,提高生产效率。 展开更多
关键词 电弧炉电气模型 粒子群算法(PSO) 三相统筹意识 神经网络预估
下载PDF
非线性系统神经自适应最优预估控制器
5
作者 娄国焕 彭力 侯国强 《燕山大学学报》 CAS 2001年第z1期25-27,共3页
基于一种简化的神经网络结构及其相应的快速辨识算法,提出了控制非线性系统的自适应预估方法.它综合了自适应预估控制在控制线性系统中的良好特性和神经网络在辨识、控制非线性系统中的高精确性.大量实验表明该控制器设计简单,适应力强... 基于一种简化的神经网络结构及其相应的快速辨识算法,提出了控制非线性系统的自适应预估方法.它综合了自适应预估控制在控制线性系统中的良好特性和神经网络在辨识、控制非线性系统中的高精确性.大量实验表明该控制器设计简单,适应力强,鲁棒性好,能有效控制一类非线性对象. 展开更多
关键词 神经网络 自适应预估控制 非线性对象.
下载PDF
优化控制在脱硝尿素热解工艺中的应用分析
6
作者 范江波 高渊 +1 位作者 袁得峰 骈雪皎 《中文科技期刊数据库(全文版)工程技术》 2024年第7期0014-0017,共4页
本文通过介绍火力发电厂SCR脱硝尿素热解工艺的基本原理,探讨优化控制在脱硝尿素热解工艺中的应用。首先,基于尿素热解工艺具有滞后性、非线性等弊端,基于此采用了Smith神经网络与PID控制相结合的控制算法,提高了脱硝喷氨的控制精度和... 本文通过介绍火力发电厂SCR脱硝尿素热解工艺的基本原理,探讨优化控制在脱硝尿素热解工艺中的应用。首先,基于尿素热解工艺具有滞后性、非线性等弊端,基于此采用了Smith神经网络与PID控制相结合的控制算法,提高了脱硝喷氨的控制精度和响应速度。结合以上情况进行具体研究结果对于火力发电厂脱硝优化控制具有重大意义和参考价值。 展开更多
关键词 脱硝 尿素热解 优化控制 神经网络预估状态控制 专家控制
下载PDF
NEURAL NETWORK SMITH PREDICTIVE CONTROL FOR TELEROBOTS WITH TIME DELAY 被引量:3
7
作者 黄金泉 徐亮 Frank L Lewis 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第1期35-40,共6页
A neural network Smith predictive control strategy is proposed to deal with inpu t and feedback time delays in telerobot systems. The delay time is assumed to b e invariant and unknown. The proposed control structure... A neural network Smith predictive control strategy is proposed to deal with inpu t and feedback time delays in telerobot systems. The delay time is assumed to b e invariant and unknown. The proposed control structure consists of a slave syst em and a master controller. In the slave system, a recurrent neural network (RNN ) with on-line weight tuning algorithm is employed to approximate the dynamics of the time-delay-free nonlinear plant, which is used to linearize the slave s ystem. The master controller is a Smith predictor for the linearized slave syste m, which provides prediction and maintains the desirable tracking performance. S tability propriety is guaranteed based on the Lyapunov method. A simulation of a two-link robotic manipulator is provided to illustrate the effectiveness of th e proposed control strategy. 展开更多
关键词 TELEROBOT time delay s ystem neural networks Smith predictor
下载PDF
Storm surge disaster evaluation model based on an artificial neural network 被引量:1
8
作者 纪芳 侯一筠 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2011年第5期1142-1146,共5页
Back propagation is employed to forecast the current of a storm with various characteristics of storm surge; the technique is thus important in disaster forecasting. One of the most fuzzy types of information in the p... Back propagation is employed to forecast the current of a storm with various characteristics of storm surge; the technique is thus important in disaster forecasting. One of the most fuzzy types of information in the prediction of geological calamity is handled employing the information diffusion method. First, a single-step prediction model and neural network prediction model are employed to collect influential information used to predict the extreme tide level. Second, information is obtained using the information diffusion method, which improves the precision of risk recognition when there is insufficient information. Experiments demonstrate that the method proposed in this paper is simple and effective and provides better forecast results than other methods. Future work will focus on a more precise forecast model. 展开更多
关键词 storm surge information diffusion neural network prediction model extreme tide level risk recognition
下载PDF
Prediction of resilient modulus for subgrade soils based on ANN approach 被引量:4
9
作者 ZHANG Jun-hui HU Jian-kun +2 位作者 PENG Jun-hui FAN Hai-shan ZHOU Chao 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第3期898-910,共13页
The resilient modulus(MR)of subgrade soils is usually used to characterize the stiffness of subgrade and is a crucial parameter in pavement design.In order to determine the resilient modulus of compacted subgrade soil... The resilient modulus(MR)of subgrade soils is usually used to characterize the stiffness of subgrade and is a crucial parameter in pavement design.In order to determine the resilient modulus of compacted subgrade soils quickly and accurately,an optimized artificial neural network(ANN)approach based on the multi-population genetic algorithm(MPGA)was proposed in this study.The MPGA overcomes the problems of the traditional ANN such as low efficiency,local optimum and over-fitting.The developed optimized ANN method consists of ten input variables,twenty-one hidden neurons,and one output variable.The physical properties(liquid limit,plastic limit,plasticity index,0.075 mm passing percentage,maximum dry density,optimum moisture content),state variables(degree of compaction,moisture content)and stress variables(confining pressure,deviatoric stress)of subgrade soils were selected as input variables.The MR was directly used as the output variable.Then,adopting a large amount of experimental data from existing literature,the developed optimized ANN method was compared with the existing representative estimation methods.The results show that the developed optimized ANN method has the advantages of fast speed,strong generalization ability and good accuracy in MR estimation. 展开更多
关键词 resilient modulus subgrade soils artificial neural network multi-population genetic algorithm prediction method
下载PDF
ESTIMATION OF ROCK-AGGREGATE VOLUME BASED ON PCA AND LM-OPTIMIZED NEURAL NETWORK
10
作者 Zhao Pan Chen Ken Wang Yicong Zhang Yun 《Journal of Electronics(China)》 2009年第6期825-830,共6页
In granule processing industries, acquisition of particle size and shape parameters is a common procedure, and volumetric measurement is of great importance in dealing with particle sizing and gradation. To eradicate ... In granule processing industries, acquisition of particle size and shape parameters is a common procedure, and volumetric measurement is of great importance in dealing with particle sizing and gradation. To eradicate the major drawbacks with manual gauge, this paper proposes an optical approach using Back Propagation (BP) neural network to estimate the particle volume based on the two-Dimensional (2D) image information. To achieve the better network efficiency and structure simplicity, Principal Component Analysis (PCA) is adopted to reduce the dimensions of network inputs To overcome the shortcomings of generic BP network for being slow to converge and vulnerable to being trapped in local minimum, Levenberg-Marquardt (LM) algorithm is applied to achieve a higher speed and a lower error rate. The real particle data is utilized in training and testing the presented network. The experimental result suggests that the proposed neural network is capable of estimating aggregate volume with satisfactory precision and superior to the generic BP network in terms of perforxnance capacity. 展开更多
关键词 Particle image Particle parameters Principal Component Analysis (PCA) NEURALNETWORK Volume estimation
下载PDF
Important Factors for Construction Project Cost Estimating Using ANN
11
作者 Nabil Ibrahim El Sawalhi 《Journal of Civil Engineering and Architecture》 2013年第1期90-97,共8页
Cost estimation has its proven importance as one of essential factors for project success. The aim of this research is to predict the early project cost using neural network. Early project cost represents a key compon... Cost estimation has its proven importance as one of essential factors for project success. The aim of this research is to predict the early project cost using neural network. Early project cost represents a key component in business unit decisions. The most important factors influencing on the parametric cost estimation in construction building projects in Gaza Strip were defined and investigated. A questionnaire survey and relative index ranking technique were used to conclude the most important factors. Fourteen most effective factors were identified. One hundred and six case studies from real executed construction project in Gaza Strip were collected for training and testing the model. The cases were prepared to be used in cost estimate neural networks model. Eighty percent of case studies were used to train and test the model. The remaining 20% was used for model verification. The results revealed the ability to the model to predict cost estimate to an acceptable degree of accuracy. The minimum squares error with 0.005 in training stage and 0.021 in testing stage were recorded. 展开更多
关键词 Cost estimating PARAMETER MODELING neural networks.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部