期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
人工神经网络-分光光度法同时测定废水中的金和钯 被引量:8
1
作者 郑静 曾嘉 +2 位作者 林开利 周伟良 潘教麦 《分析试验室》 CAS CSCD 北大核心 2006年第12期19-22,共4页
贵金属金和钯都能与新试剂5-(2-羟-基3,5-二甲基苯偶氮)罗丹宁(HD-PAR)形成稳定的红色络合物,由于二者吸收峰严重重叠,采用化学计量学中的人工神经网络方法实现了金和钯的同时测定,方法可用于废水中金和钯的同时测定。
关键词 人工神经网络-分光光度法 废水 金和钯
下载PDF
神经网络—光度法同时测定食品中防腐剂和甜味剂 被引量:11
2
作者 李东华 倪永年 《江西化工》 2002年第1期31-34,共4页
根据食品中常用防腐剂本甲酸和山梨酸及甜味剂糖精钠在紫外区均有吸收的特点 ,建立了一种以紫外分光光度法为基础对该三组分同时测定的方法 ,光谱数据采用作者自编的径向人工神经网络MATLAB程序进行处理。苯甲酸、山梨酸和糖精钠的平均... 根据食品中常用防腐剂本甲酸和山梨酸及甜味剂糖精钠在紫外区均有吸收的特点 ,建立了一种以紫外分光光度法为基础对该三组分同时测定的方法 ,光谱数据采用作者自编的径向人工神经网络MATLAB程序进行处理。苯甲酸、山梨酸和糖精钠的平均标准偏差分别为 1 .60 %、5 .2 3%和1 .2 1 %。回收率大为 95 .0 - 1 0 2 .0 %之间。将该法应用于食品中二组分的测定 。 展开更多
关键词 神经网络-光度法 同时测定 食品 防腐剂 甜味剂 苯甲酸 山梨酸 糖精钠 紫外分光光度法 径向人工神经网络
下载PDF
神经网络—光度法同时测定铀矿石中铀和钍 被引量:5
3
作者 李芳清 倪永年 《江西化工》 2002年第4期56-60,共5页
本文讨论了一种不经分离以光度法同时测定铀矿石中铀和钍的方法 ,光谱数据采用径向基人工神经网络程序进行处理。对一组合成样品进行分析 ,铀和钍的平均标准偏差分别为7.56 %和 2 .1 2 % ,回收率大约为 80— 1 1 7%。利用该法对铀矿石... 本文讨论了一种不经分离以光度法同时测定铀矿石中铀和钍的方法 ,光谱数据采用径向基人工神经网络程序进行处理。对一组合成样品进行分析 ,铀和钍的平均标准偏差分别为7.56 %和 2 .1 2 % ,回收率大约为 80— 1 1 7%。利用该法对铀矿石中的铀和钍进行测定 。 展开更多
关键词 神经网络-光度法 同时测定 铀矿石 径向基人工神经网络
下载PDF
Simultaneous Determination of Iron and Manganese in Water Using Artificial Neural Network Catalytic Spectrophotometric Method 被引量:4
4
作者 JI Hongwei XU Yan +2 位作者 LI Shuang XIN Huizhen CAO Hengxia 《Journal of Ocean University of China》 SCIE CAS 2012年第3期323-330,共8页
A new analytical method using Back-Propagation (BP) artificial neural network and kinetic spectrophotometry for simultaneous determination of iron and magnesium in tap water, the Yellow River water and seawater is est... A new analytical method using Back-Propagation (BP) artificial neural network and kinetic spectrophotometry for simultaneous determination of iron and magnesium in tap water, the Yellow River water and seawater is established. By conditional experiments, the optimum analytical conditions and parameters are obtained. Levenberg-Marquart (L-M) algorithm is used for calculation in BP neural network. The topological structure of three-layer BP ANN network architecture is chosen as 15-16-2 (nodes). The initial value of gradient coefficient μ is fixed at 0.001 and the increase factor and reduction factor of μ take the default values of the system. The data are processed by computers with our own programs written in MATLAB 7.0. The relative standard deviation of the calculated results for iron and manganese is 2.30% and 2.67% respectively. The results of standard addition method show that for the tap water, the recoveries of iron and manganese are in the ranges of 98.0%-104.3% and 96.5%-104.5%, and the RSD is in the range of 0.23%-0.98%; for the Yellow River water (Lijin district of Shandong Province), the recoveries of iron and manganese are in the ranges of 96.0%-101.0% and 98.7%-104.2%, and the RSD is in the range of 0.13%-2.52%; for the seawater in Qingdao offshore, the recoveries of iron and manganese are in the ranges of 95.3%-104.8% and 95.3%-104.7%, and the RSD is in the range of 0.14%-2.66%. It is found that 21 common cations and anions do not interfere with the determination of iron and manganese under the optimum experimental conditions. This method exhibits good reproducibility and high accuracy in the determination of iron and manganese and can be used for the simultaneous determination of iron and manganese in tap water and natural water. By using the established ANN- catalytic spectrophotometric method, the iron and manganese concentrations of the surface seawater at 11 sites in Qingdao offshore are determined and the level distribution maps of iron and manganese are drawn. 展开更多
关键词 artificial neural network simultaneous determination kinetic spectrophotometric method iron MANGANESE
下载PDF
Multispectral thermometry based on neural network 被引量:4
5
作者 孙晓刚 戴景民 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2003年第1期108-112,共5页
In order to overcome the effect of the assumption between emissivity and wavelength on the measurement of true temperature and spectral emissivity for most engineering materials, a neural network based method is propo... In order to overcome the effect of the assumption between emissivity and wavelength on the measurement of true temperature and spectral emissivity for most engineering materials, a neural network based method is proposed for data processing while a blackbody furnace and three optical filters with known spectral transmittance curves were used to make up a true target. The experimental results show that the calculated temperatures are in good agreement with the temperature of the blackbody furnace, and the calculated spectral emissivity curves are in good agreement with the spectral transmittance curves of the filters. The method proposed has been proved to be an effective method for solving the problem of true temperature and emissivity measurement, and it can overcome the effect of the assumption between emissivity and wavelength on the measurement of true temperature and spectral emissivity for most engineering materials. 展开更多
关键词 multispectal thermometry EMISSIVITY neural networK
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部