Objective. To investigate the properties of voltage-gated sodium (Na+) channels in developing auditoryneurons during early postnatal stages in the mammalian central nervous system.Methods. Using the whole-cell voltage...Objective. To investigate the properties of voltage-gated sodium (Na+) channels in developing auditoryneurons during early postnatal stages in the mammalian central nervous system.Methods. Using the whole-cell voltage-clamp technique, we have studied changes in the electrophysi-ological properties of Na+ channels in the principal neurons of the medial nucleus of the trapezoid body (MNTB).Results. We found that MNTB neurons already express functional Na+ channels at postnatal day 1 (P1),and that channel density begins to increase at P5 when the neurons receive synaptic innervation andreach its maximum (~3 fold) at P11 when functional hearing onsets. These changes were paralleled byan age-dependent acceleration in both inactivation and recovery from inactivation. In contrast, there wasvery little alteration in the voltage-dependence of inactivation.Conclusion. These profound changes in the properties of voltage-gated Na+ channels may increase theexcitability of MNTB neurons and enhance their phase-locking fidelity and capacity during high-frequencysynaptic transmission.展开更多
Objective The functional roles of protein kinase C (PKC) in the neurite outgrowth and nerve regeneration remain controversial. The present study was aimed to investigate the role of PKC in neurite outgrowth, by stud...Objective The functional roles of protein kinase C (PKC) in the neurite outgrowth and nerve regeneration remain controversial. The present study was aimed to investigate the role of PKC in neurite outgrowth, by studying their regulatory effects on neurite elongation in spinal cord neurons in vitro. Methods The anterior-horn neurons of spinal cord from embryonic day 14 (E14) Sprague-Dawley (SD) rats were dissociated, purified and cultured in the serum-containing medium. The ratio of membrane-PKC (mPKC) activity to cytoplasm-PKC (cPKC) activity (m/c-PKC) was studied at different time points during culture. Results Between 3-11 d of culture, the change of m/c-PKC activity ratio and PKC-βⅡ expression in the neurite were both significantly correlated with neurite outgrowth (r=0.95, P 〈 0.01; r=0.73, P 〈 0.01, respectively). Moreover, PMA, an activator of PKC, induced a dramatic elevation in the m/c-PKC activity ratio, accompanied with the increase in neurite length (r=-0.99, P 〈 0.01). In contrast, GF 109203X, an inhibitor of PKC, significantly inhibited neurite elongation, which could not be reversed by PMA. Conclusion PKC activity may be important in regulating neurite outgrowth in spinal cord neurons, and βⅡ isoform of PKC probably plays a major role in this process.展开更多
基金This work was supported by an operaing grant and a scholarship from the Medical Research Council of Canada(MRC)and by a start-up fund from the Hospital for Sick Children Research Institute to L,Y.W.
文摘Objective. To investigate the properties of voltage-gated sodium (Na+) channels in developing auditoryneurons during early postnatal stages in the mammalian central nervous system.Methods. Using the whole-cell voltage-clamp technique, we have studied changes in the electrophysi-ological properties of Na+ channels in the principal neurons of the medial nucleus of the trapezoid body (MNTB).Results. We found that MNTB neurons already express functional Na+ channels at postnatal day 1 (P1),and that channel density begins to increase at P5 when the neurons receive synaptic innervation andreach its maximum (~3 fold) at P11 when functional hearing onsets. These changes were paralleled byan age-dependent acceleration in both inactivation and recovery from inactivation. In contrast, there wasvery little alteration in the voltage-dependence of inactivation.Conclusion. These profound changes in the properties of voltage-gated Na+ channels may increase theexcitability of MNTB neurons and enhance their phase-locking fidelity and capacity during high-frequencysynaptic transmission.
基金supported by the National Natural Science Foundation of China (No. 39570373)
文摘Objective The functional roles of protein kinase C (PKC) in the neurite outgrowth and nerve regeneration remain controversial. The present study was aimed to investigate the role of PKC in neurite outgrowth, by studying their regulatory effects on neurite elongation in spinal cord neurons in vitro. Methods The anterior-horn neurons of spinal cord from embryonic day 14 (E14) Sprague-Dawley (SD) rats were dissociated, purified and cultured in the serum-containing medium. The ratio of membrane-PKC (mPKC) activity to cytoplasm-PKC (cPKC) activity (m/c-PKC) was studied at different time points during culture. Results Between 3-11 d of culture, the change of m/c-PKC activity ratio and PKC-βⅡ expression in the neurite were both significantly correlated with neurite outgrowth (r=0.95, P 〈 0.01; r=0.73, P 〈 0.01, respectively). Moreover, PMA, an activator of PKC, induced a dramatic elevation in the m/c-PKC activity ratio, accompanied with the increase in neurite length (r=-0.99, P 〈 0.01). In contrast, GF 109203X, an inhibitor of PKC, significantly inhibited neurite elongation, which could not be reversed by PMA. Conclusion PKC activity may be important in regulating neurite outgrowth in spinal cord neurons, and βⅡ isoform of PKC probably plays a major role in this process.