The railway tunnel concrete lining exposed to sulfate-bearing groundwater beyond 40 years in southwest of China was investigated. Field investigation, sulfate ions content and corroded products analysis, macro/microsc...The railway tunnel concrete lining exposed to sulfate-bearing groundwater beyond 40 years in southwest of China was investigated. Field investigation, sulfate ions content and corroded products analysis, macro/microscopic test were carried out. Results show that under the tunnel concrete lining structure and its served environmental conditions, sulfate solutions permeate concrete lining and accumulate on windward-side of concrete lining, resulting in the increase of sulfate ions content on windward-side and the diffusion of sulfate ions from windward-side to waterward-side, which cause the concrete lining of windward-side damaged seriously but the waterward-side of concrete lining is still in perfect condition. It is confirmed that structural characteristic of tunnel and environmental conditions lead to physical attack with the leaching of concrete and sodium sulfate crystallization as well as chemical corrosion with formation of gypsum in high sulfate concentration and formation of thaumasite in proper temperature rather than formation of ettringite. These achievements can provide academic and technical supports for understanding the deterioration mechanism of concrete lining as well as constructing railway tunnel under sulfate attack.展开更多
Soil acidification is an important process in land degradation around the world as well as in China.Acidification of Alfisols was investigated in the tea gardens with various years of tea cultivation in the eastern Ch...Soil acidification is an important process in land degradation around the world as well as in China.Acidification of Alfisols was investigated in the tea gardens with various years of tea cultivation in the eastern China.Cultivation of tea plants caused soil acidification and soil acidity increased with the increase of tea cultivation period.Soil pH of composite samples from cultivated layers decreased by 1.37,1.62 and 1.85,respectively,after 13,34 and 54 years of tea plantation,as compared to the surface soil obtained from the unused land.Soil acidification rates at early stages of tea cultivation were found to be higher than those at the later stages.The acidification rate for the period of 0-13 years was as high as 4.40 kmol H + ha ?1 year ?1 for the cultivated layer samples.Soil acidification induced the decrease of soil exchangeable base cations and base cation saturation and thus increased the soil exchangeable acidity.Soil acidification also caused the decrease of soil cation exchange capacity,especially for the 54-year-old tea garden.Soil acidification induced by tea plantation also led to the increase of soil exchangeable Al and soluble Al,which was responsible for the Al toxicity to plants.展开更多
The relationships between the basic properties and trace elements in soil argillans and corresponding matrix soils were studied by sampling from the B horizons of 26 Alfisols in croplands of the subtropical area in Ce...The relationships between the basic properties and trace elements in soil argillans and corresponding matrix soils were studied by sampling from the B horizons of 26 Alfisols in croplands of the subtropical area in Central China. The soil elements(K, Na, Ca,Mg, Mn, Co, Cu, Cr, Cd, Li, Mo, Ni, Pb, Ti, V, and Zn) were extracted by acid digestion and their contents were measured using inductively coupled plasma optical emission spectrometry(ICP-OES). The mean contents of clay and organic matter in the argillans were approximately 1.1 and 1.3 times greater than those in the matrix soils, respectively. The p H values and the contents of P2O5 and bases(K2O, Na2 O, Ca O, and Mg O) in the argillans were higher than those in the corresponding matrix soils. Cu, Cd, Ti, and V were enriched in the argillans. Correlation coefficients and factor analyses showed that Co, Cu, Li, and Zn were bound with phyllosilicates and manganese oxides(Mn-oxides) in the argillans. Cr and Pb were mainly associated with iron oxides(Fe-oxides), while Ni was bound with Mn-oxides. Cd, Ti, and V were chiefly associated with phyllosilicates, but Cr and Mo were rarely enriched in the argillans.In contrast, in the matrix soils, Co and Zn were associated with organic matter and Fe-oxides, Cr existed in phyllosilicates, and Mo was bound to Fe-oxides. Cd, Ti, and V were associated with organic matter. The results of this study suggest that clays, organic matter, and minerals in the argillans dominate the illuviation of trace elements in Alfisols. Argillans might be the active interfaces of elemental exchange and nutrient supply in cropland soils in Central China.展开更多
基金Project(51108463) supported by the National Natural Science Foundation of ChinaProject(11B041) supported by Scientific Research Fund of Hunan Provincial Education Department of ChinaProject(NCET-10-0839) supported by Ministry Education of China
文摘The railway tunnel concrete lining exposed to sulfate-bearing groundwater beyond 40 years in southwest of China was investigated. Field investigation, sulfate ions content and corroded products analysis, macro/microscopic test were carried out. Results show that under the tunnel concrete lining structure and its served environmental conditions, sulfate solutions permeate concrete lining and accumulate on windward-side of concrete lining, resulting in the increase of sulfate ions content on windward-side and the diffusion of sulfate ions from windward-side to waterward-side, which cause the concrete lining of windward-side damaged seriously but the waterward-side of concrete lining is still in perfect condition. It is confirmed that structural characteristic of tunnel and environmental conditions lead to physical attack with the leaching of concrete and sodium sulfate crystallization as well as chemical corrosion with formation of gypsum in high sulfate concentration and formation of thaumasite in proper temperature rather than formation of ettringite. These achievements can provide academic and technical supports for understanding the deterioration mechanism of concrete lining as well as constructing railway tunnel under sulfate attack.
基金Supported by the National Nature Science Foundation of China (No. 30872009)the Earmarked Fund for Modern Agro-Industry Technology Research System of China (No. nycytx-23)
文摘Soil acidification is an important process in land degradation around the world as well as in China.Acidification of Alfisols was investigated in the tea gardens with various years of tea cultivation in the eastern China.Cultivation of tea plants caused soil acidification and soil acidity increased with the increase of tea cultivation period.Soil pH of composite samples from cultivated layers decreased by 1.37,1.62 and 1.85,respectively,after 13,34 and 54 years of tea plantation,as compared to the surface soil obtained from the unused land.Soil acidification rates at early stages of tea cultivation were found to be higher than those at the later stages.The acidification rate for the period of 0-13 years was as high as 4.40 kmol H + ha ?1 year ?1 for the cultivated layer samples.Soil acidification induced the decrease of soil exchangeable base cations and base cation saturation and thus increased the soil exchangeable acidity.Soil acidification also caused the decrease of soil cation exchange capacity,especially for the 54-year-old tea garden.Soil acidification induced by tea plantation also led to the increase of soil exchangeable Al and soluble Al,which was responsible for the Al toxicity to plants.
基金financially supported by the National Natural Science Foundation of China (Nos. 40971143 and 40830527)
文摘The relationships between the basic properties and trace elements in soil argillans and corresponding matrix soils were studied by sampling from the B horizons of 26 Alfisols in croplands of the subtropical area in Central China. The soil elements(K, Na, Ca,Mg, Mn, Co, Cu, Cr, Cd, Li, Mo, Ni, Pb, Ti, V, and Zn) were extracted by acid digestion and their contents were measured using inductively coupled plasma optical emission spectrometry(ICP-OES). The mean contents of clay and organic matter in the argillans were approximately 1.1 and 1.3 times greater than those in the matrix soils, respectively. The p H values and the contents of P2O5 and bases(K2O, Na2 O, Ca O, and Mg O) in the argillans were higher than those in the corresponding matrix soils. Cu, Cd, Ti, and V were enriched in the argillans. Correlation coefficients and factor analyses showed that Co, Cu, Li, and Zn were bound with phyllosilicates and manganese oxides(Mn-oxides) in the argillans. Cr and Pb were mainly associated with iron oxides(Fe-oxides), while Ni was bound with Mn-oxides. Cd, Ti, and V were chiefly associated with phyllosilicates, but Cr and Mo were rarely enriched in the argillans.In contrast, in the matrix soils, Co and Zn were associated with organic matter and Fe-oxides, Cr existed in phyllosilicates, and Mo was bound to Fe-oxides. Cd, Ti, and V were associated with organic matter. The results of this study suggest that clays, organic matter, and minerals in the argillans dominate the illuviation of trace elements in Alfisols. Argillans might be the active interfaces of elemental exchange and nutrient supply in cropland soils in Central China.