Discrete-rate adaptive modulation (AM) scheme for distributed antenna system (DAS) with imperfect channel state information (CSI) is developed, and the corresponding performance is investigated in composite Rayl...Discrete-rate adaptive modulation (AM) scheme for distributed antenna system (DAS) with imperfect channel state information (CSI) is developed, and the corresponding performance is investigated in composite Rayleigh channel. Subject to target bit error rate (BER) constraint, an improved fixed switching threshold (FST) for the AM scheme is presented by means of tightly-approximate BER expression, and it can avoid the performance loss fxom conventional FST. Based on the imperfect CSI, the variable switching threshold (VST) is derived by utilizing the maximum a posteriori method. This VST includes the improved FST as a special case, and may lower the impact of estimation error on the performance. By the switching thresholds, the spectrum efficiency (SE) and average BER of the system are respectively derived, and resulting closed- form expressions are attained. With these expressions, the system performance can be effectively evaluated. Simulation results show that the derived theoretical SE and BER can match the simulations well. Moreover, the AM with the presented FST has higher SE than that with the conventional one, and the AM with VST can tolerate the large estimation error while maintaining the target BER.展开更多
The segregated flow pattern, which occurs in a 26.1 mm diameter, horizontal, stainless steel test section, is investigated. Pressure gradient and in situ phase distribution data were obtained for different combination...The segregated flow pattern, which occurs in a 26.1 mm diameter, horizontal, stainless steel test section, is investigated. Pressure gradient and in situ phase distribution data were obtained for different combinations of phase superficial velocities ranging from 0.05 m.s^-1 to 0,96 m.s^-1. For the current small Eoetvoes number liquid-liquid system (EOD=4.77), the dominant effect of interfacial tension and wall-wetting properties of the liquids over the gravity is considered. The approach introduces the closure relationship for the case of turbulent flow m a rough pipe, and attempts to modify the two-fluid model to account for the curved interface. In present flow rates range, wave amplitudes were found small, while interfacial mixing was observed. An adjustable definition for hydraulic diame- ters of two fluids and interfacial friction factor is adopted. The predicted pressure gradient and in situ phase distribution data have been compared with present experimental data and those reported in the literature.展开更多
We propose a new scheme to estimate the heating rate of trapped ions in thermal states. By applying a controlled-U gate between the internal and the motional states of one of the trapped ions, we could obtain the mean...We propose a new scheme to estimate the heating rate of trapped ions in thermal states. By applying a controlled-U gate between the internal and the motional states of one of the trapped ions, we could obtain the mean phonon number from the population of the internal state of the ion. The imperfection due to fluctuations of the relevant parameters in real experiments is considered and we anaiyze the experimental feasibility of our scheme with sophisticated ion trap techniques.展开更多
A new gas-solid separator dedicated to heavy-oil fast pyrolysis process incorporating inertial and centrifugal separation was designed. Gas and typical fluid catalytic cracking (FCC) catalyst particles (with a dens...A new gas-solid separator dedicated to heavy-oil fast pyrolysis process incorporating inertial and centrifugal separation was designed. Gas and typical fluid catalytic cracking (FCC) catalyst particles (with a density of 1500 kg/m3, and a mean diameter of 45.81 p.m) were used in the study. The inlet gas velocity was kept constant at 13.36 m/s, while the solid loading at the inlet ranged from 0 to 700 g/m3. When the exhaust pipe opening was provided with two narrow-width slots near the inlet without baffles, the solid collection efficiency increased with an increasing solid loading at the inlet and was close to 95% along with a decreasing pressure drop. After increasing the secondary separation structure, the separation efficiency greatly improved. By adjusting the diameter of the secondary exhaust pipe, the separation efficiency and pressure drop could be balanced. Under the experimental conditions, when the diameter of the second exhaust pipe was equal to d=100 mm, the pressure drop was lower than 1400 Pa while the separation efficiency could exceed 99.50%; and when the diameter was equal to d=120 mm, the pressure drop was less than 700 Pa, with the separation efficiency reaching over 99.00%.展开更多
The energy budget of the magnetosphere-ionosphere (MI) system during 1998-2008 was examined by using Akasofu's epsilon function. The results showed that 1) the yearly average rate of solar wind energy input into t...The energy budget of the magnetosphere-ionosphere (MI) system during 1998-2008 was examined by using Akasofu's epsilon function. The results showed that 1) the yearly average rate of solar wind energy input into the MI system was 4.51 GGJ (GGJ=1018 J), while the yearly average total dissipation was 4.30 GGJ; 2) the energy partitioning in the ring current and polar region was 56%:44%; 3) the energy input and dissipation processes continuously proceeded both in storm-substorm events and less disturbed intervals, suggesting the significant contribution of slow but long-lasting energy process during the less disturbance periods to the total energy budget. In addition, we found in this study an interesting phenomenon "self-adjustment ability" of the MI system which behaves just like a water reservoir. During solar active years, the input energy is more than the dissipated energy, implying that a portion of the input energy is not immediately released, but is stored in the magnetosphere. On the other hand, during less active years, the dissipated energy is more than the input energy, implying that the previously stored energy makes up for the energy input shortage in this period.展开更多
基金National Natural Science Foundation of China,Open Research Fund of National Mobile Communications Research Laboratory of Southeast University,Qing Lan Project of Jiangsu Province,the Fundamental Research Funds for the Central Universities,Research Founding of Graduate Innovation Center in NUAA,Innovation Fund of College of Electronic and Information Engineering of NUAA
文摘Discrete-rate adaptive modulation (AM) scheme for distributed antenna system (DAS) with imperfect channel state information (CSI) is developed, and the corresponding performance is investigated in composite Rayleigh channel. Subject to target bit error rate (BER) constraint, an improved fixed switching threshold (FST) for the AM scheme is presented by means of tightly-approximate BER expression, and it can avoid the performance loss fxom conventional FST. Based on the imperfect CSI, the variable switching threshold (VST) is derived by utilizing the maximum a posteriori method. This VST includes the improved FST as a special case, and may lower the impact of estimation error on the performance. By the switching thresholds, the spectrum efficiency (SE) and average BER of the system are respectively derived, and resulting closed- form expressions are attained. With these expressions, the system performance can be effectively evaluated. Simulation results show that the derived theoretical SE and BER can match the simulations well. Moreover, the AM with the presented FST has higher SE than that with the conventional one, and the AM with VST can tolerate the large estimation error while maintaining the target BER.
基金the National High Technology Research and Development Program of China (2006AA09Z333)
文摘The segregated flow pattern, which occurs in a 26.1 mm diameter, horizontal, stainless steel test section, is investigated. Pressure gradient and in situ phase distribution data were obtained for different combinations of phase superficial velocities ranging from 0.05 m.s^-1 to 0,96 m.s^-1. For the current small Eoetvoes number liquid-liquid system (EOD=4.77), the dominant effect of interfacial tension and wall-wetting properties of the liquids over the gravity is considered. The approach introduces the closure relationship for the case of turbulent flow m a rough pipe, and attempts to modify the two-fluid model to account for the curved interface. In present flow rates range, wave amplitudes were found small, while interfacial mixing was observed. An adjustable definition for hydraulic diame- ters of two fluids and interfacial friction factor is adopted. The predicted pressure gradient and in situ phase distribution data have been compared with present experimental data and those reported in the literature.
基金Supported by National Natural Science Foundation of China under Grant No.10774163
文摘We propose a new scheme to estimate the heating rate of trapped ions in thermal states. By applying a controlled-U gate between the internal and the motional states of one of the trapped ions, we could obtain the mean phonon number from the population of the internal state of the ion. The imperfection due to fluctuations of the relevant parameters in real experiments is considered and we anaiyze the experimental feasibility of our scheme with sophisticated ion trap techniques.
文摘A new gas-solid separator dedicated to heavy-oil fast pyrolysis process incorporating inertial and centrifugal separation was designed. Gas and typical fluid catalytic cracking (FCC) catalyst particles (with a density of 1500 kg/m3, and a mean diameter of 45.81 p.m) were used in the study. The inlet gas velocity was kept constant at 13.36 m/s, while the solid loading at the inlet ranged from 0 to 700 g/m3. When the exhaust pipe opening was provided with two narrow-width slots near the inlet without baffles, the solid collection efficiency increased with an increasing solid loading at the inlet and was close to 95% along with a decreasing pressure drop. After increasing the secondary separation structure, the separation efficiency greatly improved. By adjusting the diameter of the secondary exhaust pipe, the separation efficiency and pressure drop could be balanced. Under the experimental conditions, when the diameter of the second exhaust pipe was equal to d=100 mm, the pressure drop was lower than 1400 Pa while the separation efficiency could exceed 99.50%; and when the diameter was equal to d=120 mm, the pressure drop was less than 700 Pa, with the separation efficiency reaching over 99.00%.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40931056, 40874089)the National Basic Research Program of China ("973" Project) (Grant Nos. 2008CB425704)
文摘The energy budget of the magnetosphere-ionosphere (MI) system during 1998-2008 was examined by using Akasofu's epsilon function. The results showed that 1) the yearly average rate of solar wind energy input into the MI system was 4.51 GGJ (GGJ=1018 J), while the yearly average total dissipation was 4.30 GGJ; 2) the energy partitioning in the ring current and polar region was 56%:44%; 3) the energy input and dissipation processes continuously proceeded both in storm-substorm events and less disturbed intervals, suggesting the significant contribution of slow but long-lasting energy process during the less disturbance periods to the total energy budget. In addition, we found in this study an interesting phenomenon "self-adjustment ability" of the MI system which behaves just like a water reservoir. During solar active years, the input energy is more than the dissipated energy, implying that a portion of the input energy is not immediately released, but is stored in the magnetosphere. On the other hand, during less active years, the dissipated energy is more than the input energy, implying that the previously stored energy makes up for the energy input shortage in this period.