A carbon-based sulfonated catalyst was prepared by direct sulfonation and carbonization (in moderate conditions:200 °C, 12 h) of red liquor solids, a by-product of paper-making process. The prepared sulfonate...A carbon-based sulfonated catalyst was prepared by direct sulfonation and carbonization (in moderate conditions:200 °C, 12 h) of red liquor solids, a by-product of paper-making process. The prepared sulfonated cata-lyst (SC) had aromatic structure, composed of carbon enriched inner core, and oxygen-containing (SO3H, COOH, OH) groups enriched surface. The SO3H, COOH, OH groups amounted to 0.74 mmol·g^-1, 0.78 mmol·g^-1, 2.18 mmol·g^-1, respectively. The fresh SC showed much higher catalytic activity than that of the traditional solid acid catalysts (strong-acid 732 cation exchange resin, hydrogen type zeolite socony mobile-five (HZSM-5), sulfated zir-conia) in esterification of oleic acid. SC was deactivated during the reactions, through the mechanisms of leaching of sulfonated species and formation of sulfonate esters. Two regeneration methods were developed, and the catalytic activity can be mostly regenerated by regeneration Method 1 and be fully regenerated by regeneration Method 2, respectively.展开更多
The present work contributed to a new developed production method for enhancing the quality of isoamylene (IA) by adding a small amount of tertiary amyl alcohol (TAA) to the catalyst of strong acid cation exchange...The present work contributed to a new developed production method for enhancing the quality of isoamylene (IA) by adding a small amount of tertiary amyl alcohol (TAA) to the catalyst of strong acid cation exchange resin. TAA improved the selectivity of 2-methyl-2-butene (2M2B) at a high conversion level for the isomerization of IA. Compared with the other results from the current IA units, the conversion of 2-methyl- 1-butene (2M1B), the mass ratio of 2M2B to 2M1B and the selectivity of 2M2B were increased from 0.5474, 7.32 and 0.6864 to 0.72, 12 and 0.95, respectively, while the dimers content in the products decreased from 4.38% to below 1.0%. Optimized conditions for IA isomerization consisted of temperature between 28 and 33℃ and system pressure of 0.5 MPa, weight hourly space velocity of 8.0 h-1 with TAA mass fraction of 0.7%-0.9% in raw material. The results in lab supported bases for the developed process in industrial application which was later proved to be successful. In addition, a possible mechanism of the isomerization process was speculated to propose a key step of water formation in the TAA-added isomerization process and a verified experiment was conducted to support this speculation.展开更多
A carbon-based sulfonated catalyst was prepared by direct sulfonation and carbonization (in moderate conditions:200 °C, 12 h) of red liquor solids, a by-product of paper-making process. The prepared sulfonate...A carbon-based sulfonated catalyst was prepared by direct sulfonation and carbonization (in moderate conditions:200 °C, 12 h) of red liquor solids, a by-product of paper-making process. The prepared sulfonated cata-lyst (SC) had aromatic structure, composed of carbon enriched inner core, and oxygen-containing (SO3H, COOH, OH) groups enriched surface. The SO3H, COOH, OH groups amounted to 0.74 mmol·g^-1, 0.78 mmol·g^-1, 2.18 mmol·g^-1, respectively. The fresh SC showed much higher catalytic activity than that of the traditional solid acid catalysts (strong^-acid 732 cation exchange resin, hydrogen type zeolite socony mobile-five (HZSM-5), sulfated zir-conia) in esterification of oleic acid. SC was deactivated during the reactions, through the mechanisms of leaching of sulfonated species and formation of sulfonate esters. Two regeneration methods were developed, and the catalytic activity can be mostly regenerated by regeneration Method 1 and be fully regenerated by regeneration Method 2, respectively.展开更多
Soil and tissue analyses are usually used in identifying potassium(K) deficiencies and predicting K fertilizer requirements of crops.The critical levels of both soil and fresh leaf tissue at seventh leaf stage were de...Soil and tissue analyses are usually used in identifying potassium(K) deficiencies and predicting K fertilizer requirements of crops.The critical levels of both soil and fresh leaf tissue at seventh leaf stage were developed and assessed for canola,chickpea and sunflower grown on two Saskatchewan,soils,with six rates of K fertilizer supply, in a growth chamber experiment.The available potassium in soils was determined by two methods:1)resin strip extraction, and 2) NH4OAC extraction. The potassium in fresh leaves was determined at seventh leaf stage by a simple procedure using a common garlic press and injector to extract the plant sap and testing the sap with a handheld ion selection electrode meter. The results shoWed significant relationships between the resin strip extractable K and NH4OAC extractable K, and between the plant uptake of total K and the supply of available K in the soils determined by the two methods. Good relationships were also found between the potassium in fresh leaves and the plant uptake of total K for canola, chickpea and sunflower.The resin strip extraction for K was calibrated using common NH4OAC extraction, and recommended for routine analyses because of its simplicity and sensitivity.展开更多
In this paper, a new thin-layer ion-exchange resin phase analytical method is introduced. It is based on that, the bismuthous cation can associate with iodic anions, so as to formed an anion complex [BiI4-] in a stron...In this paper, a new thin-layer ion-exchange resin phase analytical method is introduced. It is based on that, the bismuthous cation can associate with iodic anions, so as to formed an anion complex [BiI4-] in a strong acidic environments. This anion complex can also exchanges with a weaker anions on the surface active site of anion exchange resin, so that a [R+] [BiI4-] solid phase binary associational system is produced. Owing to the solid system is a great many dispersive particulates, it can be pressed to a thin-layer by press tools of the so called 搕hin-layer resin phase?or 搑esin phase? and using this solid association system spectrophotometry for the determination of trace metals. So it can increase the analytical sensitivity. This association system exhibits maximum absorbance at 460nm, and obeys Beer抯 law over the concentration range 0.01ug/ml^1.20ug/ml of bismuthous(III). It has a molar absorptivity of 7.1×105 [L/mol穋m]. It indicated the resin phase spectrophotometry is a sensitive analytical method for trace bismuthous. It is 18 times higher than routine aqueous spectrophotometry. The relative standard deviations is 1.82% (n=6) for the measurements of 0.5ug/ml Bi(III). The detection limit of Bismuthous(III) is 1.4×10-8mol/L. The method has applied to the analysis Bi(III) in environmental water samples.展开更多
The thermal stability of five commercial ion-exchange resin catalysts was studied by means of thermal gravimetric analysis (TGA) at elevated temperatures of up to 600℃ and isothermal temperatures in the range of 15...The thermal stability of five commercial ion-exchange resin catalysts was studied by means of thermal gravimetric analysis (TGA) at elevated temperatures of up to 600℃ and isothermal temperatures in the range of 150℃ and 200 ℃. Resin samples with different initial water contents were also investigated. The study indicated that TGA, as a complementary evaluating method for the plug flow reactor system approach, could be used as a fast analyzing means for study on the thermal stability of ion-exchange resin catalysts. The stoichiometric calculation of the isothermally treated resin catalysts based on the FTIR analysis and acid capacity confirmed that the weight loss of the resins at 150℃ and 200℃ was caused by the desulfonation process and that desulfonation occurred mainly at the para-position of the benzene ring in the resins. H+ ions and moisture played an important role in the desulfonation process.展开更多
Electrochemical ion exchange has been used to tailor the composition of transition metal oxides (Co3O4) electrode with enhanced capacity while maintaining its crystal structure and morphology. Specifically, Ni ions ...Electrochemical ion exchange has been used to tailor the composition of transition metal oxides (Co3O4) electrode with enhanced capacity while maintaining its crystal structure and morphology. Specifically, Ni ions were incorporated to C03O4 nanosheets sandwiched by nanoneedles to form Co3O4/NiCo2O4 composite. As positive electrode for supercapacitors, the Co3O4/NiCo2O4 composite presents a high areal capacitance of 3.2 F cm^-2 (1060 F g^-1) at a current density of 5 mA cm^-2 and outstanding rate capability as well as long cycle stability. Moreover, the assembled aqueous asymmetric supercapacitor based on Co3O4/NiCo2O4//carbon cloth electrodes delivers a considerable energy density of 3.0 mW hcm^-3 at power density of 136 mW cm^-3, and high rate capability (85% retention at a current density of 30 mA cm^-2). A safety light composed of ten green LEDs in parallel was lit for -360 s using two identical supercapacitors in series, indicating a promising practical application.展开更多
基金Supported by the National Natural Science Foundation of China(21276076)the Fundamental Research Funds for the Central Universities of China(WA1014003)State Key Laboratory of Chemical Engineering(SKL-ChE-10C06)
文摘A carbon-based sulfonated catalyst was prepared by direct sulfonation and carbonization (in moderate conditions:200 °C, 12 h) of red liquor solids, a by-product of paper-making process. The prepared sulfonated cata-lyst (SC) had aromatic structure, composed of carbon enriched inner core, and oxygen-containing (SO3H, COOH, OH) groups enriched surface. The SO3H, COOH, OH groups amounted to 0.74 mmol·g^-1, 0.78 mmol·g^-1, 2.18 mmol·g^-1, respectively. The fresh SC showed much higher catalytic activity than that of the traditional solid acid catalysts (strong-acid 732 cation exchange resin, hydrogen type zeolite socony mobile-five (HZSM-5), sulfated zir-conia) in esterification of oleic acid. SC was deactivated during the reactions, through the mechanisms of leaching of sulfonated species and formation of sulfonate esters. Two regeneration methods were developed, and the catalytic activity can be mostly regenerated by regeneration Method 1 and be fully regenerated by regeneration Method 2, respectively.
文摘The present work contributed to a new developed production method for enhancing the quality of isoamylene (IA) by adding a small amount of tertiary amyl alcohol (TAA) to the catalyst of strong acid cation exchange resin. TAA improved the selectivity of 2-methyl-2-butene (2M2B) at a high conversion level for the isomerization of IA. Compared with the other results from the current IA units, the conversion of 2-methyl- 1-butene (2M1B), the mass ratio of 2M2B to 2M1B and the selectivity of 2M2B were increased from 0.5474, 7.32 and 0.6864 to 0.72, 12 and 0.95, respectively, while the dimers content in the products decreased from 4.38% to below 1.0%. Optimized conditions for IA isomerization consisted of temperature between 28 and 33℃ and system pressure of 0.5 MPa, weight hourly space velocity of 8.0 h-1 with TAA mass fraction of 0.7%-0.9% in raw material. The results in lab supported bases for the developed process in industrial application which was later proved to be successful. In addition, a possible mechanism of the isomerization process was speculated to propose a key step of water formation in the TAA-added isomerization process and a verified experiment was conducted to support this speculation.
基金Supported by the State Key Development Program for Basic Research of China(2013CB228104,2010CB732205)Ph.D Programs Foundation of Ministry of Education of China(20120172110011)the National High Technology Research and Development Program of China(2012AA051801)
文摘A carbon-based sulfonated catalyst was prepared by direct sulfonation and carbonization (in moderate conditions:200 °C, 12 h) of red liquor solids, a by-product of paper-making process. The prepared sulfonated cata-lyst (SC) had aromatic structure, composed of carbon enriched inner core, and oxygen-containing (SO3H, COOH, OH) groups enriched surface. The SO3H, COOH, OH groups amounted to 0.74 mmol·g^-1, 0.78 mmol·g^-1, 2.18 mmol·g^-1, respectively. The fresh SC showed much higher catalytic activity than that of the traditional solid acid catalysts (strong^-acid 732 cation exchange resin, hydrogen type zeolite socony mobile-five (HZSM-5), sulfated zir-conia) in esterification of oleic acid. SC was deactivated during the reactions, through the mechanisms of leaching of sulfonated species and formation of sulfonate esters. Two regeneration methods were developed, and the catalytic activity can be mostly regenerated by regeneration Method 1 and be fully regenerated by regeneration Method 2, respectively.
文摘Soil and tissue analyses are usually used in identifying potassium(K) deficiencies and predicting K fertilizer requirements of crops.The critical levels of both soil and fresh leaf tissue at seventh leaf stage were developed and assessed for canola,chickpea and sunflower grown on two Saskatchewan,soils,with six rates of K fertilizer supply, in a growth chamber experiment.The available potassium in soils was determined by two methods:1)resin strip extraction, and 2) NH4OAC extraction. The potassium in fresh leaves was determined at seventh leaf stage by a simple procedure using a common garlic press and injector to extract the plant sap and testing the sap with a handheld ion selection electrode meter. The results shoWed significant relationships between the resin strip extractable K and NH4OAC extractable K, and between the plant uptake of total K and the supply of available K in the soils determined by the two methods. Good relationships were also found between the potassium in fresh leaves and the plant uptake of total K for canola, chickpea and sunflower.The resin strip extraction for K was calibrated using common NH4OAC extraction, and recommended for routine analyses because of its simplicity and sensitivity.
文摘In this paper, a new thin-layer ion-exchange resin phase analytical method is introduced. It is based on that, the bismuthous cation can associate with iodic anions, so as to formed an anion complex [BiI4-] in a strong acidic environments. This anion complex can also exchanges with a weaker anions on the surface active site of anion exchange resin, so that a [R+] [BiI4-] solid phase binary associational system is produced. Owing to the solid system is a great many dispersive particulates, it can be pressed to a thin-layer by press tools of the so called 搕hin-layer resin phase?or 搑esin phase? and using this solid association system spectrophotometry for the determination of trace metals. So it can increase the analytical sensitivity. This association system exhibits maximum absorbance at 460nm, and obeys Beer抯 law over the concentration range 0.01ug/ml^1.20ug/ml of bismuthous(III). It has a molar absorptivity of 7.1×105 [L/mol穋m]. It indicated the resin phase spectrophotometry is a sensitive analytical method for trace bismuthous. It is 18 times higher than routine aqueous spectrophotometry. The relative standard deviations is 1.82% (n=6) for the measurements of 0.5ug/ml Bi(III). The detection limit of Bismuthous(III) is 1.4×10-8mol/L. The method has applied to the analysis Bi(III) in environmental water samples.
基金supported financially by the Purolite Company and Chinese National Natural Science Foundation(20674069)
文摘The thermal stability of five commercial ion-exchange resin catalysts was studied by means of thermal gravimetric analysis (TGA) at elevated temperatures of up to 600℃ and isothermal temperatures in the range of 150℃ and 200 ℃. Resin samples with different initial water contents were also investigated. The study indicated that TGA, as a complementary evaluating method for the plug flow reactor system approach, could be used as a fast analyzing means for study on the thermal stability of ion-exchange resin catalysts. The stoichiometric calculation of the isothermally treated resin catalysts based on the FTIR analysis and acid capacity confirmed that the weight loss of the resins at 150℃ and 200℃ was caused by the desulfonation process and that desulfonation occurred mainly at the para-position of the benzene ring in the resins. H+ ions and moisture played an important role in the desulfonation process.
基金supported by the National Natural Science Foundation of China (61376011)Gansu Provincial Natural Science Foundation of China (17JR5RA198)the Fundamental Research Funds for the Central Universities (lzujbky-2017-k21)
文摘Electrochemical ion exchange has been used to tailor the composition of transition metal oxides (Co3O4) electrode with enhanced capacity while maintaining its crystal structure and morphology. Specifically, Ni ions were incorporated to C03O4 nanosheets sandwiched by nanoneedles to form Co3O4/NiCo2O4 composite. As positive electrode for supercapacitors, the Co3O4/NiCo2O4 composite presents a high areal capacitance of 3.2 F cm^-2 (1060 F g^-1) at a current density of 5 mA cm^-2 and outstanding rate capability as well as long cycle stability. Moreover, the assembled aqueous asymmetric supercapacitor based on Co3O4/NiCo2O4//carbon cloth electrodes delivers a considerable energy density of 3.0 mW hcm^-3 at power density of 136 mW cm^-3, and high rate capability (85% retention at a current density of 30 mA cm^-2). A safety light composed of ten green LEDs in parallel was lit for -360 s using two identical supercapacitors in series, indicating a promising practical application.