A new configuration integrated ion exchange effect with both electro-migration and electrochemical reaction in a single cell was developed to effectively retrieve metal ions from simulated wastewater using ion exchang...A new configuration integrated ion exchange effect with both electro-migration and electrochemical reaction in a single cell was developed to effectively retrieve metal ions from simulated wastewater using ion exchange resins without additive chemicals. By simply assembling cation exchange resins and anion exchange resins separated by homogeneous membranes, we found that the system will always be acidic in the concentrate compartment so that ion exchange resins could be in-situ regenerated without hydroxide precipitation. Such a realizable design will be really suitable for wastewater purification.展开更多
Magnetic ion exchange(MIEX) resins have received considerable attention in drinking water treatment due to their fast and efficient removal of dissolved organic carbon(DOC). Two types of mechanisms, i.e., ion exchange...Magnetic ion exchange(MIEX) resins have received considerable attention in drinking water treatment due to their fast and efficient removal of dissolved organic carbon(DOC). Two types of mechanisms, i.e., ion exchange,reversible and irreversible adsorption, may occur during pollutants removal by MIEX. This work examined the removal mechanism of 17α-Ethinylestradiol(EE2) by MIEX. As one of typical estrogen micro-pollutants,EE2 existed as neutral molecule in natural water, and its charge density was close to zero [(0.00000219 ±0.00000015) meq·(μg EE2)^(-1)] based on the potentiometric titration method. However, the removal of EE2 by MIEX was much higher than that of other micro-pollutants previously reported. Multi-cycle adsorptionregeneration experiments and ion exchange stoichiometry analysis were conducted to elucidate the removal mechanism of EE2 by MIEX resin. The results suggested that the main removal mechanism of EE2 by MIEX was ion exchange instead of reversible micro-pore adsorption. The experimental analysis based on Donnan theory indicated that the internal micro-environment of resin beads was alkaline, in the alkaline environment EE2 would be ionized into negatively charged groups. As a result, ion exchange reaction occurred inside the pore of MIEX resin, and the removal process of EE2 by MIEX was dominated by the ion exchange reaction.展开更多
An insoluble SA-Fe membrane was prepared by being linked soluble sodium alginate with FeCl3. SEM was used to observe its surface structure. 1R spectrum indicated that Fe^3+ was linked with -COOH and -OH in SA membran...An insoluble SA-Fe membrane was prepared by being linked soluble sodium alginate with FeCl3. SEM was used to observe its surface structure. 1R spectrum indicated that Fe^3+ was linked with -COOH and -OH in SA membrane. As a cationic exchanging membrane in electrodialysis the membrane was applied in treating inorganic wastewater with high concentration of inorganic ammonia and azote. The results of experiment showed that it was well-selective to ammonia and azote. The percentage of the removal of ammonia and azote in wastewater was up to 80%.展开更多
基金Project supported by the Scientific Research Foundation for theReturned Overseas Chinese Scholars, State Education Ministry andZhejiang Provincial National Science Foundation of China
文摘A new configuration integrated ion exchange effect with both electro-migration and electrochemical reaction in a single cell was developed to effectively retrieve metal ions from simulated wastewater using ion exchange resins without additive chemicals. By simply assembling cation exchange resins and anion exchange resins separated by homogeneous membranes, we found that the system will always be acidic in the concentrate compartment so that ion exchange resins could be in-situ regenerated without hydroxide precipitation. Such a realizable design will be really suitable for wastewater purification.
基金Supported by the National Natural Science Foundation of China(51678408,51478314,51638011)the National Key Research and Development Program of China(2016YFC0400506)+1 种基金the Natural Science Foundation of Tianjin(14JCQNJC09000)the Research Fund of Tianjin Key Laboratory of Aquatic Science and Technology(TJKLASTZD-2016-06)
文摘Magnetic ion exchange(MIEX) resins have received considerable attention in drinking water treatment due to their fast and efficient removal of dissolved organic carbon(DOC). Two types of mechanisms, i.e., ion exchange,reversible and irreversible adsorption, may occur during pollutants removal by MIEX. This work examined the removal mechanism of 17α-Ethinylestradiol(EE2) by MIEX. As one of typical estrogen micro-pollutants,EE2 existed as neutral molecule in natural water, and its charge density was close to zero [(0.00000219 ±0.00000015) meq·(μg EE2)^(-1)] based on the potentiometric titration method. However, the removal of EE2 by MIEX was much higher than that of other micro-pollutants previously reported. Multi-cycle adsorptionregeneration experiments and ion exchange stoichiometry analysis were conducted to elucidate the removal mechanism of EE2 by MIEX resin. The results suggested that the main removal mechanism of EE2 by MIEX was ion exchange instead of reversible micro-pore adsorption. The experimental analysis based on Donnan theory indicated that the internal micro-environment of resin beads was alkaline, in the alkaline environment EE2 would be ionized into negatively charged groups. As a result, ion exchange reaction occurred inside the pore of MIEX resin, and the removal process of EE2 by MIEX was dominated by the ion exchange reaction.
基金Development and Evolution Program of Fujian. No.04FSD.
文摘An insoluble SA-Fe membrane was prepared by being linked soluble sodium alginate with FeCl3. SEM was used to observe its surface structure. 1R spectrum indicated that Fe^3+ was linked with -COOH and -OH in SA membrane. As a cationic exchanging membrane in electrodialysis the membrane was applied in treating inorganic wastewater with high concentration of inorganic ammonia and azote. The results of experiment showed that it was well-selective to ammonia and azote. The percentage of the removal of ammonia and azote in wastewater was up to 80%.