Quantum mechanics and molecular dynamics are used to simulate guanidinium ionic liquids. Results show that the stronger interaction exists between guanidine cation and chlorine anion with interaction energy about 109....Quantum mechanics and molecular dynamics are used to simulate guanidinium ionic liquids. Results show that the stronger interaction exists between guanidine cation and chlorine anion with interaction energy about 109.216 kcal/mol. There are two types of spatial distribution for the title system: middle and top. Middle mode is a more stable conformation according to energy and geometric distribution. It is also verified by radial distribution function. The continuous increase of carbon dioxide (CO2) does not affect the structure of ionic liquids, but CO2 molecules are always captured by the cavity of ionic liquids.展开更多
EDTA was used as an enhancer for Fe 2+ catalyzed light emission from luminol oxidation by dissolved oxygen. As a result, the limit of detection for ferrous ion with flow injection analysis was improved by a fact...EDTA was used as an enhancer for Fe 2+ catalyzed light emission from luminol oxidation by dissolved oxygen. As a result, the limit of detection for ferrous ion with flow injection analysis was improved by a factor of 160 by addition of EDTA to the luminol solution. Fe 2+ and Fe 3+ were determined simultaneously with a novel copper-coated zinc reductor minicolumn installed in one of the shunt after sample splitting in the manifold. The reductor minicolumn can be used for 3000 determinations at least. The dynamic range of determination was 1×10 -9 ~1×10 -5 mol·L -1 , with the limit of detection of 2.7×10 10 and 3.5×10 10 mol·L 1 ,for Fe 2+ and Fe 3+ , respectively. The preci sion for determination of 2×10 7 mol·L 1 of Fe 2+ and Fe 3+ was 2.3% and 4.0% (n=8), respectively, at a sampling rate of 60 h -1 . Cr 3+ and Co 2+ interfere. Fe 2+ and Fe 3+ in mixture were determined with satisfactory results. Samples of Fe 2+ and Fe 3+ were determined simultaneously and the results in good agreement with the standard spectrophotometric method. Indications were shown that EDTA functions as an enhancer, Fe 2+ as a catalyst, and oxygen is the oxidant of the chemiluminescent reaction, and the mechanism of the reaction was discussed.展开更多
We report on the photodissociation dynamics of CO2^+ via its A2Пu,1/2 state using the scheme of [1+1] photon excitation that is intermediated by the mode-selected A2Hu,1/2(Vl,V2,0) vibronic states. Photodissociat...We report on the photodissociation dynamics of CO2^+ via its A2Пu,1/2 state using the scheme of [1+1] photon excitation that is intermediated by the mode-selected A2Hu,1/2(Vl,V2,0) vibronic states. Photodissociation fragment exciation spectrum and images of photofragment CO+ have been measured to obtain reaction dynamics parameters such as the available energy and the average translational energy. Combining with the potential energy functions of CO2^+, the dissociation mechanism of CO2^+ is discussed. The conformational variation of CO2^+ from linear to bent on the photodissociation dynamics of CO2^+ is verified.展开更多
An efficient and environmentally friendly procedure was described for easy product isolation for the oxidation of cyclohexane with tert-butyl-hydroperoxide catalyzed by titanium silicalite 1 (TS-1) in ambient-temper...An efficient and environmentally friendly procedure was described for easy product isolation for the oxidation of cyclohexane with tert-butyl-hydroperoxide catalyzed by titanium silicalite 1 (TS-1) in ambient-temperature ionic liquid [emim]BF4. Good yield and higher selectivity of products were found in the ionic liquid compared with in molecular solvent. The research results showed 13.2% conversion of cyclohexane, 97.6% cyclohexanol and cyclohexanone selectivity were obtained in ionic liquid under mild conditions of 90℃.展开更多
Nitrogen and phosphorus co-doped graphene quantum dot-modified Bi5O7 I(NPG/Bi5O7 I)nanorods were fabricated via a simple solvothermal method.The morphology,structure,and optical properties of the as-prepared samples w...Nitrogen and phosphorus co-doped graphene quantum dot-modified Bi5O7 I(NPG/Bi5O7 I)nanorods were fabricated via a simple solvothermal method.The morphology,structure,and optical properties of the as-prepared samples were investigated by X-ray diffraction,scanning electron microscopy,high-resolution transmission electron microscopy,X-ray photoelectron spectroscopy(XPS),and diffused reflectance spectroscopy.The photocatalytic performance was estimated by degrading the broad-spectrum antibiotics tetracycline and enrofloxacin under visible light irradiation.The photodegradation activity of Bi5O7 I improved after its surface was modified with NPGs,which was attributed to an increase in the photogenerated charge transport rate and a decrease in the electron-hole pair recombination efficiency.From the electron spin resonance spectra,XPS valence band data,and free radical trapping experiment results,the main active substances involved in the photocatalytic degradation process were determined to be photogenerated holes and superoxide radicals.A possible photocatalytic degradation mechanism for NPG/Bi5O7 I nanorods was proposed.展开更多
Molecular interactions of the ternary mixtures of 1-butyl-3-methylimidazolium chloride ([C4C1im]Cl)-water-2,6-dimethoxyphenol (2,6-DMP, a phenolic monomer lignin model compound) were investigated in comparison wit...Molecular interactions of the ternary mixtures of 1-butyl-3-methylimidazolium chloride ([C4C1im]Cl)-water-2,6-dimethoxyphenol (2,6-DMP, a phenolic monomer lignin model compound) were investigated in comparison with the [C4C1im]Cl-water binary systems through attenuated total reflection infrared spectroscopy. Results indicated that the microstructures of water and [C4C1im]Cl changed with varying mole fraction of [C4C1im]Cl (xIL) from 0.01 to 1.0. This change was mainly attributed to the interactions of [C4C1im]Cl-water and the self-aggregation of [C4C1im]Cl through hydrogen bonding. The band shifts of C-H on imidazolium ring and the functional groups in 2,6-DMP indicated that the occurrence of intermolecular interactions by different mechanisms (i.e., hydrogen bonding or π-π stacking) resulted in 2,6-DMP dissolution. In the case of xIL=0.12, the slightly hydrogen-bonded water was fully destroyed and [C4C1im]Cl existed in the form of hydrated ion pairs. Interestingly, the maximum 2,6-DMP solubility (238.5 g/100 g) was achieved in this case. The interactions and microstructures of [C4C1im]Cl-water mixtures influenced the dissolution behavior of 2,6-DMP.展开更多
The two novel green oxidation processes of p/o-cresols to p/o-hydroxybenzaldehydes catalyzed by metalloporphyrins in the presence of molecular oxygen were developed in this work.Among the metalloporphyrins with differ...The two novel green oxidation processes of p/o-cresols to p/o-hydroxybenzaldehydes catalyzed by metalloporphyrins in the presence of molecular oxygen were developed in this work.Among the metalloporphyrins with different central ions and substituents studied,T(p-NO 2)PPCoCl and T(p-OCH 3)PPFeCl presented the highest activities for p-cresol and o-cresol oxidation reactions respectively.The molar ratio of sodium hydroxide to cresols and different reaction parameters including reaction temperature,reaction time and reaction pressure have been investigated,and 69.8%/50.4% conversions of p/o-cresol and 86.6%/26.6% selectivities for p/o-hydroxybenzaldehydes were reached under optimized conditions.展开更多
Principally the basis of ISE is selecting of a support solid matrix and a nonsoluble compound or complexes of insighted cation, mixed with this solid. For preparing the ISE membranes there are some materials such PVC,...Principally the basis of ISE is selecting of a support solid matrix and a nonsoluble compound or complexes of insighted cation, mixed with this solid. For preparing the ISE membranes there are some materials such PVC, PE, organic polyelectrolytes, conducting polymers and inorganic compounds. The black white microscope photos are included, too. Detailed schemes and pictures of the electrodes and correlations were shown in the following article. Results are seen compatible for construction of the versatile ISE electrodes.展开更多
Recent progress in ultrafast lasers,ultrafast X-rays and ultrafast electron beams has made it possible to watch the motion of atoms in real time through pumpprobe technique.In this review,we focus on how the molecular...Recent progress in ultrafast lasers,ultrafast X-rays and ultrafast electron beams has made it possible to watch the motion of atoms in real time through pumpprobe technique.In this review,we focus on how the molecular dynamics can be studied with ultrafast electron diffraction where the dynamics is initiated by a pumping laser and then probed by pulsed electron beams.This technique allows one to track the molecular dynamics with femtosecond time resolution and Angstr6m spatial resolution.We present the basic physics and latest development of this technique.Representative applications of ultrafast electron diffraction in studies of laser-induced molecular dynamics are also discussed.This table-top technique is complementary to X-ray free-electron laser and we expect it to have a strong impact in studies of chemical dynamics.展开更多
Propagation of a high frequency electromagnetic wave in under-dence plasma in presence of an external magnetic field is investigated. When a constant magnetic field perpendicular to the motion of electrons is applied,...Propagation of a high frequency electromagnetic wave in under-dence plasma in presence of an external magnetic field is investigated. When a constant magnetic field perpendicular to the motion of electrons is applied, then the electrons rotate around the magnetic field lines and generate electromagnetic part in the wake with a nonzero group velocity. Using of the Maxwell equations and nonlinear differential equation for the electric field a direct one dimensional (ID) procedure for calculating wake equations are developed and the electric and magnetic field profile in the plasma are investigated.展开更多
Aqueous Zn-based energy-storage devices have aroused much interest in recent years.However,uncontrollable dendrite growth in the Zn anode significantly limits their cycle life.Moreover,the poor low-temperature perform...Aqueous Zn-based energy-storage devices have aroused much interest in recent years.However,uncontrollable dendrite growth in the Zn anode significantly limits their cycle life.Moreover,the poor low-temperature performance arising from the freezing of aqueous electrolytes at sub-zero temperatures restricts their practical applications in cold regions.Here,we fabricated low-temperature-tolerant and durable Zn-ion hybrid supercapacitors(ZHSCs)via modulating a co-solvent water/ethylene glycol electrolyte.The interaction of intermolecular hydrogen bonds between water and ethylene glycol as well as cation solvation was systematically investigated by tuning the co-solvent composition.The results illustrate that the ZnSO_(4)/water/ethylene glycol(65%)electrolyte possesses high ionic conductivity at low temperatures and effectively prevents the dendrite formation of the Zn anode.The as-fabricated ZHSCs exhibit long-term cyclability and are capable of working at sub-zero temperatures as low as -40℃.The present ZHSCs are anti-freezing and cost-effective,which may find new applications in the fields of next-generation electrochemical energy storage devices.展开更多
Electrolytes are widely considered as a key component in Li–O;batteries (LOBs) because they greatly affect the discharge-charge reaction kinetics and reversibility.Herein,we report that 1,3-dimethyl-2-imidazolidinone...Electrolytes are widely considered as a key component in Li–O;batteries (LOBs) because they greatly affect the discharge-charge reaction kinetics and reversibility.Herein,we report that 1,3-dimethyl-2-imidazolidinone (DMI) is an excellent electrolyte solvent for LOBs.Comparing with conventional ether and sulfone based electrolytes,it has higher Li_(2)O_(2)and Li_(2)CO_(3)solubility,which on the one hand depresses cathode passivation during discharge,and on the other hand promotes the liquid-phase redox shuttling during charge,and consequently lowers the overpotential and improves the cyclability of the battery.However,despite the many advantages at the cathode side,DMI is not stable with bare Li anode.Thus,we have developed a pretreatment method to grow a protective artificial solid-state electrolyte interface(SEI) to prevent the unfavorable side-reactions on Li.The SEI film was formed via the reaction between fluorine-rich organic reagents and Li metal.It is composed of highly Li^(+)-conducting Li_(x)BO_(y),LiF,Li_(x)NO_(y),Li_(3)N particles and some organic compounds,in which Li_(x)BO_(y)serves as a binder to enhance its mechanical strength.With the protective SEI,the coulombic efficiency of Li plating/stripping in DMI electrolyte increased from 20%to 98.5%and the fixed capacity cycle life of the assembled LOB was elongated to205 rounds,which was almost fivefold of the cycle life in dimethyl sulfoxide (DMSO) or tetraglyme(TEGDME) based electrolytes.Our work demonstrates that molecular polarity and ionic solvation structure are the primary issues to be considered when designing high performance Li–O;battery electrolytes,and cross-linked artificial SEI is effective in improving the anodic stability.展开更多
Polyoxometalates(POMs) are a class of molecular metal oxides, showing numerous applications in various chemical processes due to their unique acid/base and redox features. By adjusting the tunable molecular structures...Polyoxometalates(POMs) are a class of molecular metal oxides, showing numerous applications in various chemical processes due to their unique acid/base and redox features. By adjusting the tunable molecular structures of the anions and counter cations, plenty of POM-based ionic liquids(POM-based ILs) have been fabricated to be used in various fields, such as catalysis, structural chemistry and material science. As a class of excellent catalysts, POM-based ILs have shown advantages in the emerging field of CO_2 utilization such as CO_2 capture, cycloaddition of CO_2 to epoxides, and reduction of CO_2, owing to the efficient activation of CO_2 by POM anions. This review summarizes recent advances in the catalysis of POM-based ILs, and particularly highlights the areas that are related to CO_2 conversion.展开更多
Although many ionic liquids have been reported, their polarity is not completely understood. Different empirical polarity scales for molecular solvents always lead to different polarity orders when they are applied on...Although many ionic liquids have been reported, their polarity is not completely understood. Different empirical polarity scales for molecular solvents always lead to different polarity orders when they are applied on ionic liquids. Based on a literature survey, this review summarizes the recent polarity scales of ionic liquids according to the following 4 classes:(1) equilibrium and kinetic rate constants of chemical reactions;(2) empirical polar parameters of ionic liquids;(3) spectral properties of probe molecules;(4) multiparameter approaches. In addition, their interrelations are presented. A systematic understanding of the relationship between different polarity parameters of ionic liquids is of great importance for finding a universal set of parameters that can be used to predict the polarities of ionic liquids quantitatively. The potential utilization of the electron paramagnetic resonance in this field is also addressed.展开更多
The decomposition of Cull nanoparticles in aqueous solution has been successfully developed as a novel method for the preparation of Cu2O nanoparticles. In particular, we found that the decomposition of Cull nanoparti...The decomposition of Cull nanoparticles in aqueous solution has been successfully developed as a novel method for the preparation of Cu2O nanoparticles. In particular, we found that the decomposition of Cull nanoparticles in aqueous solution could be catalyzed by Au colloids, forming CU2O-Au nanocomposites. The composition and structure of the resulting Cu2O-Au nanocomposites have been characterized in detail by inductively coupled plasma atomic emission spectroscopy, powder X-ray diffraction, N2 adsorption-desorption isotherms, infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. Their visible-light-driven photocatalytic activity toward various dye molecules has also been investigated. Depending on the Au:Cu ratio, Cu20-Au nanocomposites exhibit different novel nanostructures including a beautiful flower-like nanostructure that consists of polycrystalline Cu2O, amorphous Cu2O and Au colloids. We propose that the rapidly-generated bubbles of H2 during the course of the catalytic decomposition reaction drive the simultaneously-formed Cu2O to form amorphous curved thin foils and might also act as a template to assemble curved thin foils of amorphous Cu2O, polycrystalline Cu2O and Au colloids into uniform nanostructures. A Cu2O-Au nanocomposite with a Cu:Au ratio of 40 exhibits remarkable chemisorption capacity and visible-light-driven photocatalytic activity towards methyl orange and acid orange 7 and is a promising chemisorption-photocatalysis integrated catalyst. The catalytic decomposition of the metal hydride might open up a new approach for the fabrication of other metal/metal oxide nanocomposites with novel nanostructures and properties.展开更多
基金ACKNOWLEDGMENTS This work was supported by the Open Project Program of Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education, Hunan University of Science and Technology, China (No.E21104), the National Natural Science Foundation of China (No.21201062 and No.21172066), and the International Cooperation Project (No.2013DFG60060).
文摘Quantum mechanics and molecular dynamics are used to simulate guanidinium ionic liquids. Results show that the stronger interaction exists between guanidine cation and chlorine anion with interaction energy about 109.216 kcal/mol. There are two types of spatial distribution for the title system: middle and top. Middle mode is a more stable conformation according to energy and geometric distribution. It is also verified by radial distribution function. The continuous increase of carbon dioxide (CO2) does not affect the structure of ionic liquids, but CO2 molecules are always captured by the cavity of ionic liquids.
文摘EDTA was used as an enhancer for Fe 2+ catalyzed light emission from luminol oxidation by dissolved oxygen. As a result, the limit of detection for ferrous ion with flow injection analysis was improved by a factor of 160 by addition of EDTA to the luminol solution. Fe 2+ and Fe 3+ were determined simultaneously with a novel copper-coated zinc reductor minicolumn installed in one of the shunt after sample splitting in the manifold. The reductor minicolumn can be used for 3000 determinations at least. The dynamic range of determination was 1×10 -9 ~1×10 -5 mol·L -1 , with the limit of detection of 2.7×10 10 and 3.5×10 10 mol·L 1 ,for Fe 2+ and Fe 3+ , respectively. The preci sion for determination of 2×10 7 mol·L 1 of Fe 2+ and Fe 3+ was 2.3% and 4.0% (n=8), respectively, at a sampling rate of 60 h -1 . Cr 3+ and Co 2+ interfere. Fe 2+ and Fe 3+ in mixture were determined with satisfactory results. Samples of Fe 2+ and Fe 3+ were determined simultaneously and the results in good agreement with the standard spectrophotometric method. Indications were shown that EDTA functions as an enhancer, Fe 2+ as a catalyst, and oxygen is the oxidant of the chemiluminescent reaction, and the mechanism of the reaction was discussed.
基金This work was supported by the Natural Science Foundation of Changzhou Institute of Technology (No.YN1507), Undergraduate Training Program for Innovation of Changzhou Institute of Technology (No.J150245), the China Postdoctoral Science Foundation (No.2013M531506), the National Natural Science Foundation of China (No.21273212).
文摘We report on the photodissociation dynamics of CO2^+ via its A2Пu,1/2 state using the scheme of [1+1] photon excitation that is intermediated by the mode-selected A2Hu,1/2(Vl,V2,0) vibronic states. Photodissociation fragment exciation spectrum and images of photofragment CO+ have been measured to obtain reaction dynamics parameters such as the available energy and the average translational energy. Combining with the potential energy functions of CO2^+, the dissociation mechanism of CO2^+ is discussed. The conformational variation of CO2^+ from linear to bent on the photodissociation dynamics of CO2^+ is verified.
基金Supported by the National Natural Science Foundation of China (20776037).
文摘An efficient and environmentally friendly procedure was described for easy product isolation for the oxidation of cyclohexane with tert-butyl-hydroperoxide catalyzed by titanium silicalite 1 (TS-1) in ambient-temperature ionic liquid [emim]BF4. Good yield and higher selectivity of products were found in the ionic liquid compared with in molecular solvent. The research results showed 13.2% conversion of cyclohexane, 97.6% cyclohexanol and cyclohexanone selectivity were obtained in ionic liquid under mild conditions of 90℃.
文摘Nitrogen and phosphorus co-doped graphene quantum dot-modified Bi5O7 I(NPG/Bi5O7 I)nanorods were fabricated via a simple solvothermal method.The morphology,structure,and optical properties of the as-prepared samples were investigated by X-ray diffraction,scanning electron microscopy,high-resolution transmission electron microscopy,X-ray photoelectron spectroscopy(XPS),and diffused reflectance spectroscopy.The photocatalytic performance was estimated by degrading the broad-spectrum antibiotics tetracycline and enrofloxacin under visible light irradiation.The photodegradation activity of Bi5O7 I improved after its surface was modified with NPGs,which was attributed to an increase in the photogenerated charge transport rate and a decrease in the electron-hole pair recombination efficiency.From the electron spin resonance spectra,XPS valence band data,and free radical trapping experiment results,the main active substances involved in the photocatalytic degradation process were determined to be photogenerated holes and superoxide radicals.A possible photocatalytic degradation mechanism for NPG/Bi5O7 I nanorods was proposed.
基金This work was supported by the National Natural Science Foundation of China (No.21106011 and No.21276034) and the Program of Science and Technology of Liaoning Province (No.201602058), and China Scholarship Council.
文摘Molecular interactions of the ternary mixtures of 1-butyl-3-methylimidazolium chloride ([C4C1im]Cl)-water-2,6-dimethoxyphenol (2,6-DMP, a phenolic monomer lignin model compound) were investigated in comparison with the [C4C1im]Cl-water binary systems through attenuated total reflection infrared spectroscopy. Results indicated that the microstructures of water and [C4C1im]Cl changed with varying mole fraction of [C4C1im]Cl (xIL) from 0.01 to 1.0. This change was mainly attributed to the interactions of [C4C1im]Cl-water and the self-aggregation of [C4C1im]Cl through hydrogen bonding. The band shifts of C-H on imidazolium ring and the functional groups in 2,6-DMP indicated that the occurrence of intermolecular interactions by different mechanisms (i.e., hydrogen bonding or π-π stacking) resulted in 2,6-DMP dissolution. In the case of xIL=0.12, the slightly hydrogen-bonded water was fully destroyed and [C4C1im]Cl existed in the form of hydrated ion pairs. Interestingly, the maximum 2,6-DMP solubility (238.5 g/100 g) was achieved in this case. The interactions and microstructures of [C4C1im]Cl-water mixtures influenced the dissolution behavior of 2,6-DMP.
基金Supported by the Key Project of National Natural Science Foundation of China (21036009, 20776003)the Key Project of Natural Science Foundation of Beijing (2061001)the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of the Beijing Municipality (PHR 200907105, PHR 201107104)
文摘The two novel green oxidation processes of p/o-cresols to p/o-hydroxybenzaldehydes catalyzed by metalloporphyrins in the presence of molecular oxygen were developed in this work.Among the metalloporphyrins with different central ions and substituents studied,T(p-NO 2)PPCoCl and T(p-OCH 3)PPFeCl presented the highest activities for p-cresol and o-cresol oxidation reactions respectively.The molar ratio of sodium hydroxide to cresols and different reaction parameters including reaction temperature,reaction time and reaction pressure have been investigated,and 69.8%/50.4% conversions of p/o-cresol and 86.6%/26.6% selectivities for p/o-hydroxybenzaldehydes were reached under optimized conditions.
文摘Principally the basis of ISE is selecting of a support solid matrix and a nonsoluble compound or complexes of insighted cation, mixed with this solid. For preparing the ISE membranes there are some materials such PVC, PE, organic polyelectrolytes, conducting polymers and inorganic compounds. The black white microscope photos are included, too. Detailed schemes and pictures of the electrodes and correlations were shown in the following article. Results are seen compatible for construction of the versatile ISE electrodes.
基金The work was supported by the National Natural Science Foundation of China(No.11925505).
文摘Recent progress in ultrafast lasers,ultrafast X-rays and ultrafast electron beams has made it possible to watch the motion of atoms in real time through pumpprobe technique.In this review,we focus on how the molecular dynamics can be studied with ultrafast electron diffraction where the dynamics is initiated by a pumping laser and then probed by pulsed electron beams.This technique allows one to track the molecular dynamics with femtosecond time resolution and Angstr6m spatial resolution.We present the basic physics and latest development of this technique.Representative applications of ultrafast electron diffraction in studies of laser-induced molecular dynamics are also discussed.This table-top technique is complementary to X-ray free-electron laser and we expect it to have a strong impact in studies of chemical dynamics.
文摘Propagation of a high frequency electromagnetic wave in under-dence plasma in presence of an external magnetic field is investigated. When a constant magnetic field perpendicular to the motion of electrons is applied, then the electrons rotate around the magnetic field lines and generate electromagnetic part in the wake with a nonzero group velocity. Using of the Maxwell equations and nonlinear differential equation for the electric field a direct one dimensional (ID) procedure for calculating wake equations are developed and the electric and magnetic field profile in the plasma are investigated.
基金supported by the National Natural Science Foundation of China(51772116 and 51972132)the program for HUST Academic Frontier Youth Team(2016QYTD04)。
文摘Aqueous Zn-based energy-storage devices have aroused much interest in recent years.However,uncontrollable dendrite growth in the Zn anode significantly limits their cycle life.Moreover,the poor low-temperature performance arising from the freezing of aqueous electrolytes at sub-zero temperatures restricts their practical applications in cold regions.Here,we fabricated low-temperature-tolerant and durable Zn-ion hybrid supercapacitors(ZHSCs)via modulating a co-solvent water/ethylene glycol electrolyte.The interaction of intermolecular hydrogen bonds between water and ethylene glycol as well as cation solvation was systematically investigated by tuning the co-solvent composition.The results illustrate that the ZnSO_(4)/water/ethylene glycol(65%)electrolyte possesses high ionic conductivity at low temperatures and effectively prevents the dendrite formation of the Zn anode.The as-fabricated ZHSCs exhibit long-term cyclability and are capable of working at sub-zero temperatures as low as -40℃.The present ZHSCs are anti-freezing and cost-effective,which may find new applications in the fields of next-generation electrochemical energy storage devices.
文摘Electrolytes are widely considered as a key component in Li–O;batteries (LOBs) because they greatly affect the discharge-charge reaction kinetics and reversibility.Herein,we report that 1,3-dimethyl-2-imidazolidinone (DMI) is an excellent electrolyte solvent for LOBs.Comparing with conventional ether and sulfone based electrolytes,it has higher Li_(2)O_(2)and Li_(2)CO_(3)solubility,which on the one hand depresses cathode passivation during discharge,and on the other hand promotes the liquid-phase redox shuttling during charge,and consequently lowers the overpotential and improves the cyclability of the battery.However,despite the many advantages at the cathode side,DMI is not stable with bare Li anode.Thus,we have developed a pretreatment method to grow a protective artificial solid-state electrolyte interface(SEI) to prevent the unfavorable side-reactions on Li.The SEI film was formed via the reaction between fluorine-rich organic reagents and Li metal.It is composed of highly Li^(+)-conducting Li_(x)BO_(y),LiF,Li_(x)NO_(y),Li_(3)N particles and some organic compounds,in which Li_(x)BO_(y)serves as a binder to enhance its mechanical strength.With the protective SEI,the coulombic efficiency of Li plating/stripping in DMI electrolyte increased from 20%to 98.5%and the fixed capacity cycle life of the assembled LOB was elongated to205 rounds,which was almost fivefold of the cycle life in dimethyl sulfoxide (DMSO) or tetraglyme(TEGDME) based electrolytes.Our work demonstrates that molecular polarity and ionic solvation structure are the primary issues to be considered when designing high performance Li–O;battery electrolytes,and cross-linked artificial SEI is effective in improving the anodic stability.
基金supported by the National Natural Science Foundation of China (21472103)the Specialized Research Fund for the Doctoral Program of Higher Education (20130031110013)+1 种基金the Ministry of Education Innovation Team (IRT13022) of Chinathe "111" Project of Ministry of Education of China (B06005)
文摘Polyoxometalates(POMs) are a class of molecular metal oxides, showing numerous applications in various chemical processes due to their unique acid/base and redox features. By adjusting the tunable molecular structures of the anions and counter cations, plenty of POM-based ionic liquids(POM-based ILs) have been fabricated to be used in various fields, such as catalysis, structural chemistry and material science. As a class of excellent catalysts, POM-based ILs have shown advantages in the emerging field of CO_2 utilization such as CO_2 capture, cycloaddition of CO_2 to epoxides, and reduction of CO_2, owing to the efficient activation of CO_2 by POM anions. This review summarizes recent advances in the catalysis of POM-based ILs, and particularly highlights the areas that are related to CO_2 conversion.
基金supported by the National Natural Science Foundation of China (21573196)the Program for Zhejiang Leading Team of S&T Innovation (2011R50007)the Fundamental Research Funds of the Central Universities
文摘Although many ionic liquids have been reported, their polarity is not completely understood. Different empirical polarity scales for molecular solvents always lead to different polarity orders when they are applied on ionic liquids. Based on a literature survey, this review summarizes the recent polarity scales of ionic liquids according to the following 4 classes:(1) equilibrium and kinetic rate constants of chemical reactions;(2) empirical polar parameters of ionic liquids;(3) spectral properties of probe molecules;(4) multiparameter approaches. In addition, their interrelations are presented. A systematic understanding of the relationship between different polarity parameters of ionic liquids is of great importance for finding a universal set of parameters that can be used to predict the polarities of ionic liquids quantitatively. The potential utilization of the electron paramagnetic resonance in this field is also addressed.
基金This work was financially supported by the National Natural Science Foundation of China (grant No. 20773113), the Solar Energy Project of the Chinese Academy of Sciences, the National Basic Research Program of China (No. 2010CB923302), MOE program for PCSIRT (IRT0756), the Fundamental Research Funds for the Central Universities (No. WK2060030005), and the MPG-CAS partner group program.
文摘The decomposition of Cull nanoparticles in aqueous solution has been successfully developed as a novel method for the preparation of Cu2O nanoparticles. In particular, we found that the decomposition of Cull nanoparticles in aqueous solution could be catalyzed by Au colloids, forming CU2O-Au nanocomposites. The composition and structure of the resulting Cu2O-Au nanocomposites have been characterized in detail by inductively coupled plasma atomic emission spectroscopy, powder X-ray diffraction, N2 adsorption-desorption isotherms, infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. Their visible-light-driven photocatalytic activity toward various dye molecules has also been investigated. Depending on the Au:Cu ratio, Cu20-Au nanocomposites exhibit different novel nanostructures including a beautiful flower-like nanostructure that consists of polycrystalline Cu2O, amorphous Cu2O and Au colloids. We propose that the rapidly-generated bubbles of H2 during the course of the catalytic decomposition reaction drive the simultaneously-formed Cu2O to form amorphous curved thin foils and might also act as a template to assemble curved thin foils of amorphous Cu2O, polycrystalline Cu2O and Au colloids into uniform nanostructures. A Cu2O-Au nanocomposite with a Cu:Au ratio of 40 exhibits remarkable chemisorption capacity and visible-light-driven photocatalytic activity towards methyl orange and acid orange 7 and is a promising chemisorption-photocatalysis integrated catalyst. The catalytic decomposition of the metal hydride might open up a new approach for the fabrication of other metal/metal oxide nanocomposites with novel nanostructures and properties.