Electrocatalytic reduction reactions,powered by clean energy sources such as solar energy and wind,offer a sustainable method for converting inexpensive feedstocks(e.g.,CO_(2),N_(2)/NO_(x),organics,and O_(2))into high...Electrocatalytic reduction reactions,powered by clean energy sources such as solar energy and wind,offer a sustainable method for converting inexpensive feedstocks(e.g.,CO_(2),N_(2)/NO_(x),organics,and O_(2))into high-value-added chemicals or fuels.The design and modification of electrocatalysts have been widely implemented to improve their performance in these reactions.However,bottle-necks are encountered,making it challenging to further improve performance through catalyst development alone.Recently,cations in the electrolyte have emerged as critical factors for tuning both the activity and product selectivity of reduction reactions.This review summarizes recent advances in understanding the role of cation effects in electrocatalytic reduction reactions.First,we introduce the mechanisms underlying cation effects.We then provide a comprehensive overview of their application in electroreduction reactions.Characterization techniques and theoretical calcula-tion methods for studying cation effects are also discussed.Finally,we address remaining challeng-es and future perspectives in this field.We hope that this review offers fundamental insights and design guidance for utilizing cation effects,thereby advancing their development.展开更多
The potential energy profile of the reaction between the atomic oxygen radical anion and acetonitrile has been mapped at the G3MP2B3 level of theory. Geometries of the reactants, products, intermediate complexes, and ...The potential energy profile of the reaction between the atomic oxygen radical anion and acetonitrile has been mapped at the G3MP2B3 level of theory. Geometries of the reactants, products, intermediate complexes, and transition states involved in this reaction have been optimized at the (U)B3LYP/6-31+G(d,p) level, and then their accurate relative energies have been improved using the G3MP2B3 method. The potential energy profile is confirmed via intrinsic reaction coordinate calculations of transition states. Four possible production channels are examined respectively, as H+ transfer, H-atom transfer, H2+ transfer, and bi- molecular nucleophilic substitution (SN2) reaction pathways. Based on present calculations, the H2+ transfer reaction is major among these four channels, which agrees with previous experimental conclusions.展开更多
The reaction of Nb+ with CS2, producing cationic transition-metal sulfide and CS, was taken as a representative example to elucidate the overall mechanism of reactions of second- row early transition metal ions with ...The reaction of Nb+ with CS2, producing cationic transition-metal sulfide and CS, was taken as a representative example to elucidate the overall mechanism of reactions of second- row early transition metal ions with CS2. The reactions in both triplet and quintet state were studied by using the UB3LYP density functional method with the Stuttgart pseudo potentials and corresponding basis sets for Nb+ and the standard 6-311+G(2d) basis sets for C and S. The geometries for reactants, the transition states, and the products were completely optimized. All the transition states were verified by vibrational analysis and intrinsic reaction coordinate calculations. The results show that the reaction mechanism between niobium ion and CS2 is an insertion-elimination mechanism. Intersystem crossing may occur in the reaction Nb+ with CS2 and a minimum energy crossing point was found.展开更多
A mechanochemical method with SiO_(2)as the grinding aid was used to enhance the leaching efficiencies of Co and Li from spent lithium batteries(LIBs).Experiment results show that the optimal leaching efficiencies of ...A mechanochemical method with SiO_(2)as the grinding aid was used to enhance the leaching efficiencies of Co and Li from spent lithium batteries(LIBs).Experiment results show that the optimal leaching efficiencies of 94.91%for Co and 97.22%for Li were obtained under the parameters of SiO_(2)/LiCoO_(2)mass ratio of 1:1,grinding speed of 500 r/min and grinding time of 30 min in citric acid.Characterization results indicate that the surficial properties of LiCoO_(2)were changed after mechanochemical grinding treatment due to the newly generated surfaces on LiCoO_(2).Meanwhile,the incompletely coordinated atomic structure and defective lattice structure lead to the activation of LiCoO_(2).The reduction effect of carbon black on Co^(3+)under the action of mechanical forces increases its leaching efficiencies in the citric acid solution.The proposed process was found efficiently to recover Co and Li from LiCoO_(2).展开更多
The concept of an integrated "lab on a chip" has long been a goal for the micro-electro-mechanical-systems(MEMS) community.This would entail the integration of not only the sampling and analysis of various f...The concept of an integrated "lab on a chip" has long been a goal for the micro-electro-mechanical-systems(MEMS) community.This would entail the integration of not only the sampling and analysis of various functions,but also the ability to transmit this information off the chip to a central repository.This paper describes the initial steps in the fabrication of a "lab on a chip" which would continually analyze blood sampled via microneedles using techniques such as nano plasmonics,specifically,concentrations of glucose.The analysis could then be transmitted off the chip using digital signal processing.This paper describes the analysis and optimization of the microneedle shape and size and the fabrication of the resulting needles in silicon using deep reactive ion etching(DRIE).The paper also describes the opportunities for fabrication of such needles in alternative materials and describes the issues that still have to be overcome before such an integrated device is realized.展开更多
文摘Electrocatalytic reduction reactions,powered by clean energy sources such as solar energy and wind,offer a sustainable method for converting inexpensive feedstocks(e.g.,CO_(2),N_(2)/NO_(x),organics,and O_(2))into high-value-added chemicals or fuels.The design and modification of electrocatalysts have been widely implemented to improve their performance in these reactions.However,bottle-necks are encountered,making it challenging to further improve performance through catalyst development alone.Recently,cations in the electrolyte have emerged as critical factors for tuning both the activity and product selectivity of reduction reactions.This review summarizes recent advances in understanding the role of cation effects in electrocatalytic reduction reactions.First,we introduce the mechanisms underlying cation effects.We then provide a comprehensive overview of their application in electroreduction reactions.Characterization techniques and theoretical calcula-tion methods for studying cation effects are also discussed.Finally,we address remaining challeng-es and future perspectives in this field.We hope that this review offers fundamental insights and design guidance for utilizing cation effects,thereby advancing their development.
文摘The potential energy profile of the reaction between the atomic oxygen radical anion and acetonitrile has been mapped at the G3MP2B3 level of theory. Geometries of the reactants, products, intermediate complexes, and transition states involved in this reaction have been optimized at the (U)B3LYP/6-31+G(d,p) level, and then their accurate relative energies have been improved using the G3MP2B3 method. The potential energy profile is confirmed via intrinsic reaction coordinate calculations of transition states. Four possible production channels are examined respectively, as H+ transfer, H-atom transfer, H2+ transfer, and bi- molecular nucleophilic substitution (SN2) reaction pathways. Based on present calculations, the H2+ transfer reaction is major among these four channels, which agrees with previous experimental conclusions.
文摘The reaction of Nb+ with CS2, producing cationic transition-metal sulfide and CS, was taken as a representative example to elucidate the overall mechanism of reactions of second- row early transition metal ions with CS2. The reactions in both triplet and quintet state were studied by using the UB3LYP density functional method with the Stuttgart pseudo potentials and corresponding basis sets for Nb+ and the standard 6-311+G(2d) basis sets for C and S. The geometries for reactants, the transition states, and the products were completely optimized. All the transition states were verified by vibrational analysis and intrinsic reaction coordinate calculations. The results show that the reaction mechanism between niobium ion and CS2 is an insertion-elimination mechanism. Intersystem crossing may occur in the reaction Nb+ with CS2 and a minimum energy crossing point was found.
基金financially supported by the Key-Area Research and Development Program of Guangdong Province,China(No.2020B090919003)the National Natural Science Foundation of China(Nos.51574234,51904295)+2 种基金the Special Fund(Social Development)Project of Key Research and Development Plan of Jiangsu Province,China(No.BE2019634)the Science Foundation of Jiangsu Province,China(No.BK20180647)the Postdoctoral Science Foundation of China(No.2018M640538)。
文摘A mechanochemical method with SiO_(2)as the grinding aid was used to enhance the leaching efficiencies of Co and Li from spent lithium batteries(LIBs).Experiment results show that the optimal leaching efficiencies of 94.91%for Co and 97.22%for Li were obtained under the parameters of SiO_(2)/LiCoO_(2)mass ratio of 1:1,grinding speed of 500 r/min and grinding time of 30 min in citric acid.Characterization results indicate that the surficial properties of LiCoO_(2)were changed after mechanochemical grinding treatment due to the newly generated surfaces on LiCoO_(2).Meanwhile,the incompletely coordinated atomic structure and defective lattice structure lead to the activation of LiCoO_(2).The reduction effect of carbon black on Co^(3+)under the action of mechanical forces increases its leaching efficiencies in the citric acid solution.The proposed process was found efficiently to recover Co and Li from LiCoO_(2).
文摘The concept of an integrated "lab on a chip" has long been a goal for the micro-electro-mechanical-systems(MEMS) community.This would entail the integration of not only the sampling and analysis of various functions,but also the ability to transmit this information off the chip to a central repository.This paper describes the initial steps in the fabrication of a "lab on a chip" which would continually analyze blood sampled via microneedles using techniques such as nano plasmonics,specifically,concentrations of glucose.The analysis could then be transmitted off the chip using digital signal processing.This paper describes the analysis and optimization of the microneedle shape and size and the fabrication of the resulting needles in silicon using deep reactive ion etching(DRIE).The paper also describes the opportunities for fabrication of such needles in alternative materials and describes the issues that still have to be overcome before such an integrated device is realized.