The simultaneous removal of ethyl acetate, benzene and toluene with relatively low or high initial concentration is studied using a laboratory scale gliding arc gas discharge (GA) reactor. Good decomposition efficienc...The simultaneous removal of ethyl acetate, benzene and toluene with relatively low or high initial concentration is studied using a laboratory scale gliding arc gas discharge (GA) reactor. Good decomposition efficiencies are obtained which proves that the GA is effective for the treatment of volatile organic compounds (VOCs) with either low or high concentration. A theoretical decomposition mechanism is proposed based on detection of the species in the plasma region and analysis of the decomposition by-products. This preliminary investigation reveals that the GA has potential to be applied to the treatment of exhaust air during color printing and coating works, by either direct removal or combination with activated carbon adsorption/desorption process.展开更多
Breakdown formation in the explosive-emission sources is related to the interelectrode gap filling with the cathode and anode plasma generated at the anode and in the gap under the beam influence. Under conditions of ...Breakdown formation in the explosive-emission sources is related to the interelectrode gap filling with the cathode and anode plasma generated at the anode and in the gap under the beam influence. Under conditions of saturation of the cathode plasma emissive ability as well as when the measures on the emission boundary stabilization are taken, the anode plasma has the deciding part in the formation of the electron source breakdown. The paper presents the results of the anode plasma investigations obtained to solve the problem of the electron beam length increase in the explosive-emission sources. The data concerning the gas release from the anode, the mechanism of the anode plasma formation and the anode plasma influence on the parameters of the generated electron beam are presented as well.展开更多
基金Project (No. 50476058) supported by the National Natural ScienceFoundation of China
文摘The simultaneous removal of ethyl acetate, benzene and toluene with relatively low or high initial concentration is studied using a laboratory scale gliding arc gas discharge (GA) reactor. Good decomposition efficiencies are obtained which proves that the GA is effective for the treatment of volatile organic compounds (VOCs) with either low or high concentration. A theoretical decomposition mechanism is proposed based on detection of the species in the plasma region and analysis of the decomposition by-products. This preliminary investigation reveals that the GA has potential to be applied to the treatment of exhaust air during color printing and coating works, by either direct removal or combination with activated carbon adsorption/desorption process.
文摘Breakdown formation in the explosive-emission sources is related to the interelectrode gap filling with the cathode and anode plasma generated at the anode and in the gap under the beam influence. Under conditions of saturation of the cathode plasma emissive ability as well as when the measures on the emission boundary stabilization are taken, the anode plasma has the deciding part in the formation of the electron source breakdown. The paper presents the results of the anode plasma investigations obtained to solve the problem of the electron beam length increase in the explosive-emission sources. The data concerning the gas release from the anode, the mechanism of the anode plasma formation and the anode plasma influence on the parameters of the generated electron beam are presented as well.