The properties of dissolution in different solvents,the specific heat capacity and thermal decomposition process under the non-isothermal conditions for energetic triazole ionic salts 1,2,4-triazolium nitrate(1a),1,2,...The properties of dissolution in different solvents,the specific heat capacity and thermal decomposition process under the non-isothermal conditions for energetic triazole ionic salts 1,2,4-triazolium nitrate(1a),1,2,3-triazolium nitrate(1b),3,4,5triamino-1,2,4-triazolium nitrate(2a),3,4,5-triamino-1,2,4-triazolium dinitramide(2b)were precisely measured using a Calvet Microcalorimeter.The thermochemical equation,differential enthalpies of dissolution(△difH m ),standard molar enthalpies of dissolution(△difH m ),apparent activation energy(E),pre-exponential constant(A),kinetic equation,linear relationship of specific heat capacity with temperature over the temperature range from 283 to 353 K,standard molar heat capacity(C p,m)and enthalpy,entropy and Gibbs free energy at 283–353 K,taking 298.15 K as the benchmark for 1a,1b,2a and 2b were obtained with treating experimental data and theoretical calculation method.The kinetic and thermodynamic parameters of thermal decomposition reaction,critical temperature of thermal explosion(Tb),self-accelerating decomposition temperature(TSADT)and adiabatic time-to-explosion(t)of 1a,1b,2a and 2b were calculated.Their heat-resistance abilities were evaluated.Information was obtained on the relation between molecular structures and properties of 1a,1b,2a and 2b.展开更多
Carbon dots (CDs) with average diameter of 3.1 ± 0.5 nm were facilely synthesized with candle soot through hydrothermal reaction in sodium hydroxide aqueous solution. The as-prepared CDs were covered with a lot o...Carbon dots (CDs) with average diameter of 3.1 ± 0.5 nm were facilely synthesized with candle soot through hydrothermal reaction in sodium hydroxide aqueous solution. The as-prepared CDs were covered with a lot of hydroxyls, possessed properties of good water-solubility, anti-photobleaching, salt tolerance, and low cytotoxicity, and had a fluorescence quantum yield (QY) of about 5.5%. The fluorescence of the hydroxyls-coated CDs could be selectively quenched by metal ions such as Cr3+, Al3+ and Fe3+, which is because these metals can easily combine with the hydroxyl groups on the surface of CDs and induce aggregation of hydroxyls-coated CDs. Experiments showed that the quenching of Cr3+ had a Sterm-Volmer constant of 1.03 × 107 M-1 with a liner range of 1.0-25.0 μM and detection limit of 60 nM (3σ).展开更多
Water-dispersed CdSe/Bi2Se3 core/shell QDs with a photothermal conversion coefficient of 27.09% have been synthesized by a cation exchange reaction. The microstructure and crystal structure of the QDs, which were conf...Water-dispersed CdSe/Bi2Se3 core/shell QDs with a photothermal conversion coefficient of 27.09% have been synthesized by a cation exchange reaction. The microstructure and crystal structure of the QDs, which were confirmed by TEM and XRD, showed that partial cation exchange occurred inside the CdSe QDs. Two main mechanisms are responsible for the excellent photothermal conversion: inhibition of radiative recombination of carriers due to the formation of type-II semiconductor heterostructures, and the large surface-to-volume ratio of the QDs. Photothermal conversion experiments indicated that the CdSe/Bi2Se3 QDs showed high photothermal conversion efficiency and excellent NIR photostability.展开更多
Currently, many organic materials are being considered as electrode materials and display good electrochemical behavior. However, the most critical issues related to the wide use of organic electrodes are their low th...Currently, many organic materials are being considered as electrode materials and display good electrochemical behavior. However, the most critical issues related to the wide use of organic electrodes are their low thermal stability and poor cycling performance due to their high solubility in electrolytes. Focusing on one of the most conventional carboxylate organic materials, namely lithium terephthalate Li2CsH4O4, we tackle these typical disadvantages via modifying its molecular structure by cation substitution. CaCsH4O4 and A12(C8H4O4)3 are prepared via a facile cation exchange reaction. Of these, CaCsH4O4 presents the best cycling performance with thermal stability up to 570℃ and capacity of 399 mA.h.g-1, without any capacity decay in the voltage window of 0.005-3.0 V. The molecular, crystal structure, and morphology of CaCsH4O4 are retained during cycling. This cation-substitution strategy brings new perspectives in the synthesis of new materials as well as broadening the applications of organic materials in Li/Na-ion batteries.展开更多
Sodium layered oxides generally suffer from deep-desodiation instability in P2 structure and sluggish kinetics in O3 structure.It will be great to design P2/O3 biphasic materials that bring the complementary merits of...Sodium layered oxides generally suffer from deep-desodiation instability in P2 structure and sluggish kinetics in O3 structure.It will be great to design P2/O3 biphasic materials that bring the complementary merits of both structures.However,such exploration is hindered by the ambiguous mechanism of material formation.Herein,supported by theoretical simulations and various spectroscopies,we prove that P2/O3 biphasic structures essentially originate from the internal heterogeneity of cationic potential,which can be realized by constraining the temperature-driven ion diffusion during solid-state reactions.Consequently,P2/O3 biphasic Na_(0.7)Ni_(0.2)Cu_(0.1)Fe_(0.2)Mn_(0.5)O_(2)-δ with well-designed quaternary composition is successfully obtained,exhibiting much-improved rate capabilities(62 mAh g^(-1)at 2.4 A g^(-1)) and cycling stabilities(84%capacity retention after 500 cycles)than its single-phase analogues.Furthermore,synchrotron-based diffraction and X-ray absorption spectroscopy are employed to unravel the underlying sodium-storage mechanism of the P2/O3 biphasic structure.This work presents new insights toward the rational design of advanced layered cathodes for sodium-ion batteries.展开更多
基金supported by the National Natural Science Foundation of China (20573098)the Science and Technology Foundation of National Key Lab of Science and Technology on Combustion and Explosion in China (9140C3503030805)
文摘The properties of dissolution in different solvents,the specific heat capacity and thermal decomposition process under the non-isothermal conditions for energetic triazole ionic salts 1,2,4-triazolium nitrate(1a),1,2,3-triazolium nitrate(1b),3,4,5triamino-1,2,4-triazolium nitrate(2a),3,4,5-triamino-1,2,4-triazolium dinitramide(2b)were precisely measured using a Calvet Microcalorimeter.The thermochemical equation,differential enthalpies of dissolution(△difH m ),standard molar enthalpies of dissolution(△difH m ),apparent activation energy(E),pre-exponential constant(A),kinetic equation,linear relationship of specific heat capacity with temperature over the temperature range from 283 to 353 K,standard molar heat capacity(C p,m)and enthalpy,entropy and Gibbs free energy at 283–353 K,taking 298.15 K as the benchmark for 1a,1b,2a and 2b were obtained with treating experimental data and theoretical calculation method.The kinetic and thermodynamic parameters of thermal decomposition reaction,critical temperature of thermal explosion(Tb),self-accelerating decomposition temperature(TSADT)and adiabatic time-to-explosion(t)of 1a,1b,2a and 2b were calculated.Their heat-resistance abilities were evaluated.Information was obtained on the relation between molecular structures and properties of 1a,1b,2a and 2b.
基金financially supported by the National Natural Science Foundation of China (21035005)
文摘Carbon dots (CDs) with average diameter of 3.1 ± 0.5 nm were facilely synthesized with candle soot through hydrothermal reaction in sodium hydroxide aqueous solution. The as-prepared CDs were covered with a lot of hydroxyls, possessed properties of good water-solubility, anti-photobleaching, salt tolerance, and low cytotoxicity, and had a fluorescence quantum yield (QY) of about 5.5%. The fluorescence of the hydroxyls-coated CDs could be selectively quenched by metal ions such as Cr3+, Al3+ and Fe3+, which is because these metals can easily combine with the hydroxyl groups on the surface of CDs and induce aggregation of hydroxyls-coated CDs. Experiments showed that the quenching of Cr3+ had a Sterm-Volmer constant of 1.03 × 107 M-1 with a liner range of 1.0-25.0 μM and detection limit of 60 nM (3σ).
基金This work has been partly supported by the National Basic Research Program of China (973 Program) No. 2011CB922204-2, and the National Natural Science Foundation of China (Nos. 11434010, 11147024, 11247025, 11304306, 11374002, and 61290303).
文摘Water-dispersed CdSe/Bi2Se3 core/shell QDs with a photothermal conversion coefficient of 27.09% have been synthesized by a cation exchange reaction. The microstructure and crystal structure of the QDs, which were confirmed by TEM and XRD, showed that partial cation exchange occurred inside the CdSe QDs. Two main mechanisms are responsible for the excellent photothermal conversion: inhibition of radiative recombination of carriers due to the formation of type-II semiconductor heterostructures, and the large surface-to-volume ratio of the QDs. Photothermal conversion experiments indicated that the CdSe/Bi2Se3 QDs showed high photothermal conversion efficiency and excellent NIR photostability.
文摘Currently, many organic materials are being considered as electrode materials and display good electrochemical behavior. However, the most critical issues related to the wide use of organic electrodes are their low thermal stability and poor cycling performance due to their high solubility in electrolytes. Focusing on one of the most conventional carboxylate organic materials, namely lithium terephthalate Li2CsH4O4, we tackle these typical disadvantages via modifying its molecular structure by cation substitution. CaCsH4O4 and A12(C8H4O4)3 are prepared via a facile cation exchange reaction. Of these, CaCsH4O4 presents the best cycling performance with thermal stability up to 570℃ and capacity of 399 mA.h.g-1, without any capacity decay in the voltage window of 0.005-3.0 V. The molecular, crystal structure, and morphology of CaCsH4O4 are retained during cycling. This cation-substitution strategy brings new perspectives in the synthesis of new materials as well as broadening the applications of organic materials in Li/Na-ion batteries.
基金supported by the National Natural Science Foundation of China(U21A20284)Science and Technology Foundation of Guizhou Province(QKHZC20202Y037)+4 种基金the Science and Technology Innovation Program of Hunan Province(2020RC40052019RS1004)Innovation Mover Program of Central South University(2020CX007)National Research Foundation of Korea(NRF-2017R1A2B3004383)the China Scholarship Council(CSC)for the financial support(202006370306)。
文摘Sodium layered oxides generally suffer from deep-desodiation instability in P2 structure and sluggish kinetics in O3 structure.It will be great to design P2/O3 biphasic materials that bring the complementary merits of both structures.However,such exploration is hindered by the ambiguous mechanism of material formation.Herein,supported by theoretical simulations and various spectroscopies,we prove that P2/O3 biphasic structures essentially originate from the internal heterogeneity of cationic potential,which can be realized by constraining the temperature-driven ion diffusion during solid-state reactions.Consequently,P2/O3 biphasic Na_(0.7)Ni_(0.2)Cu_(0.1)Fe_(0.2)Mn_(0.5)O_(2)-δ with well-designed quaternary composition is successfully obtained,exhibiting much-improved rate capabilities(62 mAh g^(-1)at 2.4 A g^(-1)) and cycling stabilities(84%capacity retention after 500 cycles)than its single-phase analogues.Furthermore,synchrotron-based diffraction and X-ray absorption spectroscopy are employed to unravel the underlying sodium-storage mechanism of the P2/O3 biphasic structure.This work presents new insights toward the rational design of advanced layered cathodes for sodium-ion batteries.