Triangular Au-Ag framework nanostructures (TFN) were synthesized via a multi-step galvanic replacement reaction (MGRR) of single-crystalline triangular silver nanoplates in a chlorauric acid (HAuCl4) solution at...Triangular Au-Ag framework nanostructures (TFN) were synthesized via a multi-step galvanic replacement reaction (MGRR) of single-crystalline triangular silver nanoplates in a chlorauric acid (HAuCl4) solution at room temperature. The morphological, compositional, and crystal structural changes involved with reaction steps were analyzed by using transmission electron microscopy(TEM), energy-dispersive X-ray spectrometry (EDX), and X-ray diffraction. TEM combined with EDX and selected area electron diffraction confirmed the replacement of Ag with Au. The in-plane dipolar surface plasmon resonance (SPR) absorption band of the Ag nanoplates locating initially at around 700 nm gradually redshifted to 1 100 nm via a multi-stage replacement manner after 7 stages. The adding amount of HAuCl4 per stage influenced the average redshift value per stage, thus enabled a fine tuning of the in-plane dipolar band. A proposed formation mechanism of the original Ag nanoplates developing pores while growing Au nanoparticles covering this underlying structure at more reaction steps was confirmed by exploiting surface-enhanced Raman scattering (SERS).展开更多
Currently, many organic materials are being considered as electrode materials and display good electrochemical behavior. However, the most critical issues related to the wide use of organic electrodes are their low th...Currently, many organic materials are being considered as electrode materials and display good electrochemical behavior. However, the most critical issues related to the wide use of organic electrodes are their low thermal stability and poor cycling performance due to their high solubility in electrolytes. Focusing on one of the most conventional carboxylate organic materials, namely lithium terephthalate Li2CsH4O4, we tackle these typical disadvantages via modifying its molecular structure by cation substitution. CaCsH4O4 and A12(C8H4O4)3 are prepared via a facile cation exchange reaction. Of these, CaCsH4O4 presents the best cycling performance with thermal stability up to 570℃ and capacity of 399 mA.h.g-1, without any capacity decay in the voltage window of 0.005-3.0 V. The molecular, crystal structure, and morphology of CaCsH4O4 are retained during cycling. This cation-substitution strategy brings new perspectives in the synthesis of new materials as well as broadening the applications of organic materials in Li/Na-ion batteries.展开更多
基金Project(10804101)supported by the National Natural Science Foundation of ChinaProject(2007CB815102)supported by the National Basic Research Program of ChinaProject(2007B08007)supported by the Science and Technology Development Foundation of Chinese Academy of Engineering Physics,China
文摘Triangular Au-Ag framework nanostructures (TFN) were synthesized via a multi-step galvanic replacement reaction (MGRR) of single-crystalline triangular silver nanoplates in a chlorauric acid (HAuCl4) solution at room temperature. The morphological, compositional, and crystal structural changes involved with reaction steps were analyzed by using transmission electron microscopy(TEM), energy-dispersive X-ray spectrometry (EDX), and X-ray diffraction. TEM combined with EDX and selected area electron diffraction confirmed the replacement of Ag with Au. The in-plane dipolar surface plasmon resonance (SPR) absorption band of the Ag nanoplates locating initially at around 700 nm gradually redshifted to 1 100 nm via a multi-stage replacement manner after 7 stages. The adding amount of HAuCl4 per stage influenced the average redshift value per stage, thus enabled a fine tuning of the in-plane dipolar band. A proposed formation mechanism of the original Ag nanoplates developing pores while growing Au nanoparticles covering this underlying structure at more reaction steps was confirmed by exploiting surface-enhanced Raman scattering (SERS).
文摘Currently, many organic materials are being considered as electrode materials and display good electrochemical behavior. However, the most critical issues related to the wide use of organic electrodes are their low thermal stability and poor cycling performance due to their high solubility in electrolytes. Focusing on one of the most conventional carboxylate organic materials, namely lithium terephthalate Li2CsH4O4, we tackle these typical disadvantages via modifying its molecular structure by cation substitution. CaCsH4O4 and A12(C8H4O4)3 are prepared via a facile cation exchange reaction. Of these, CaCsH4O4 presents the best cycling performance with thermal stability up to 570℃ and capacity of 399 mA.h.g-1, without any capacity decay in the voltage window of 0.005-3.0 V. The molecular, crystal structure, and morphology of CaCsH4O4 are retained during cycling. This cation-substitution strategy brings new perspectives in the synthesis of new materials as well as broadening the applications of organic materials in Li/Na-ion batteries.