离子聚合物金属复合物(ionic polymer metal composite,IPMC)是一种离子型的电致动聚合物,在低电压驱动下可以产生较大的位移形变,因其柔性好、响应速度快、无噪音、与人类肌肉特性相近等特点,成为仿生驱动材料的较佳选择.针对IPMC材料...离子聚合物金属复合物(ionic polymer metal composite,IPMC)是一种离子型的电致动聚合物,在低电压驱动下可以产生较大的位移形变,因其柔性好、响应速度快、无噪音、与人类肌肉特性相近等特点,成为仿生驱动材料的较佳选择.针对IPMC材料的输出力进行测试研究,搭建了一套基于美国国家仪器(NI)公司的面向仪器系统的PCI扩展(PCI extensions for instrumentation,PXI)虚拟仪器平台的IPMC力学测试系统,通过LABVIEW开发环境编写了IPMC力测量数据的采集与分析处理软件,通过该系统可以直观得到IPMC输出力变化规律.针对商业离子基膜和自浇铸离子基膜的IPMC进行测试对比分析,得到IPMC材料的输出力变化规律.展开更多
离子聚合物金属复合材料(Ionic Polymer Metal Composite,IPMC)是由聚合物基底膜和金属电极复合而成的一种新型的离子型电致动材料.对基底膜进行表面粗化处理,改善聚合物基底和金属电极间交界面构筑方式是提高材料性能的重要方法.本文针...离子聚合物金属复合材料(Ionic Polymer Metal Composite,IPMC)是由聚合物基底膜和金属电极复合而成的一种新型的离子型电致动材料.对基底膜进行表面粗化处理,改善聚合物基底和金属电极间交界面构筑方式是提高材料性能的重要方法.本文针对IPMC人工肌肉的制备提出了一种可控的基底膜定向表面粗化方法,基于UMT-2摩擦磨损试验机的线性往复运动设计了一套IPMC基底膜表面粗化装置.对比手工粗化,采用3种载荷对Nafion商业膜表面进行了机械粗化处理.对不同粗化条件获得的基底膜以相同的工艺制备IPMC,研究了不同粗化方法和条件对IPMC人工肌肉力和位移输出性能的影响.结果表明,机械粗化能够排除手工粗化过程中人为因素的影响,做到粗化加载的力度及方向性可控,使磨痕深浅均匀方向一致.相比手工粗化,通过机械粗化可以改善基底膜与电极层之间的构筑紧密程度,增加铂颗粒的吸附能力和沉积厚度,获得更为平整致密、裂隙均匀有序的表面电极,从而降低IPMC表面电阻,提升力和位移输出能力.致密且较厚的电极层同时可以阻挡一部分水分的泄露,延长IPMC有效工作的时间.该研究能够提升IPMC制备工艺的稳定性,为IPMC制备的标准化奠定基础,同时提高IPMC人工肌肉的驱动性能,对IPMC人工肌肉的进一步开发应用提供保障.展开更多
Ionic polymer metal composites (IPMCs), a new kind of electro-active polymer, can be used for micro robotic actuators, artificial muscles and dynamic sensors. However, IPMC actuators have the major drawbacks of a low ...Ionic polymer metal composites (IPMCs), a new kind of electro-active polymer, can be used for micro robotic actuators, artificial muscles and dynamic sensors. However, IPMC actuators have the major drawbacks of a low generative blocking force and dependence on a humid environment, which limit their further application. Multiple process parameters for the fabrication of IPMCs were optimized to produce a maximum blocking force; the parameters included reducing agent concentration, platinum salt concentration in the initial compositing process, and tetraethyl orthosilicate (TEOS) content. An orthogonal array method was designed and a series of fabrication experiments were carried out to identify the optimum process parameters. The results show that the platinum salt concentration in the initial compositing process plays the most significant role in improving the blocking force of IPMCs, the TEOS content plays an important role, and the reducing agent concentration has no apparent effect on the blocking force. In the optimized conditions, the IPMC actuator exhibited maximum blocking force of 50 mN, and the corresponding displacement was 14 mm. Compared with normal conditions, the blocking force improved 2.4-fold without sacrificing the displacement, and the effective air-operating life was prolonged 5.8-fold for the blocking force and 5-fold for the displacement. This study lays a solid foundation for further applications of IPMCs.展开更多
文摘离子聚合物金属复合物(ionic polymer metal composite,IPMC)是一种离子型的电致动聚合物,在低电压驱动下可以产生较大的位移形变,因其柔性好、响应速度快、无噪音、与人类肌肉特性相近等特点,成为仿生驱动材料的较佳选择.针对IPMC材料的输出力进行测试研究,搭建了一套基于美国国家仪器(NI)公司的面向仪器系统的PCI扩展(PCI extensions for instrumentation,PXI)虚拟仪器平台的IPMC力学测试系统,通过LABVIEW开发环境编写了IPMC力测量数据的采集与分析处理软件,通过该系统可以直观得到IPMC输出力变化规律.针对商业离子基膜和自浇铸离子基膜的IPMC进行测试对比分析,得到IPMC材料的输出力变化规律.
文摘离子聚合物金属复合材料(Ionic Polymer Metal Composite,IPMC)是由聚合物基底膜和金属电极复合而成的一种新型的离子型电致动材料.对基底膜进行表面粗化处理,改善聚合物基底和金属电极间交界面构筑方式是提高材料性能的重要方法.本文针对IPMC人工肌肉的制备提出了一种可控的基底膜定向表面粗化方法,基于UMT-2摩擦磨损试验机的线性往复运动设计了一套IPMC基底膜表面粗化装置.对比手工粗化,采用3种载荷对Nafion商业膜表面进行了机械粗化处理.对不同粗化条件获得的基底膜以相同的工艺制备IPMC,研究了不同粗化方法和条件对IPMC人工肌肉力和位移输出性能的影响.结果表明,机械粗化能够排除手工粗化过程中人为因素的影响,做到粗化加载的力度及方向性可控,使磨痕深浅均匀方向一致.相比手工粗化,通过机械粗化可以改善基底膜与电极层之间的构筑紧密程度,增加铂颗粒的吸附能力和沉积厚度,获得更为平整致密、裂隙均匀有序的表面电极,从而降低IPMC表面电阻,提升力和位移输出能力.致密且较厚的电极层同时可以阻挡一部分水分的泄露,延长IPMC有效工作的时间.该研究能够提升IPMC制备工艺的稳定性,为IPMC制备的标准化奠定基础,同时提高IPMC人工肌肉的驱动性能,对IPMC人工肌肉的进一步开发应用提供保障.
基金supported by the National Natural Science Foundation of China (50705043, 50805076, 50975140)
文摘Ionic polymer metal composites (IPMCs), a new kind of electro-active polymer, can be used for micro robotic actuators, artificial muscles and dynamic sensors. However, IPMC actuators have the major drawbacks of a low generative blocking force and dependence on a humid environment, which limit their further application. Multiple process parameters for the fabrication of IPMCs were optimized to produce a maximum blocking force; the parameters included reducing agent concentration, platinum salt concentration in the initial compositing process, and tetraethyl orthosilicate (TEOS) content. An orthogonal array method was designed and a series of fabrication experiments were carried out to identify the optimum process parameters. The results show that the platinum salt concentration in the initial compositing process plays the most significant role in improving the blocking force of IPMCs, the TEOS content plays an important role, and the reducing agent concentration has no apparent effect on the blocking force. In the optimized conditions, the IPMC actuator exhibited maximum blocking force of 50 mN, and the corresponding displacement was 14 mm. Compared with normal conditions, the blocking force improved 2.4-fold without sacrificing the displacement, and the effective air-operating life was prolonged 5.8-fold for the blocking force and 5-fold for the displacement. This study lays a solid foundation for further applications of IPMCs.