The irradiation effects of Ar+, He+, and S+ with energy from 10 eV to 180 eV on n-InP(100) surface are analyzed by X-ray photoelectron spectroscopy and low energy electron diffraction. After irradiation on the n-...The irradiation effects of Ar+, He+, and S+ with energy from 10 eV to 180 eV on n-InP(100) surface are analyzed by X-ray photoelectron spectroscopy and low energy electron diffraction. After irradiation on the n-InP surface, damage on the surface, displacement of the Fermilevel and formation of sulfur species on S+ exposed surface are found and studied. Successive annealing is done to suppress the surface states introduced by S+ exposure. However, it is unsuccessful in removing the damage caused by noble ions. Besides, S+ ions can efficiently repair the Ar+ damaged surface, and finally form a fine 2×2 InP surface.展开更多
The interaction of a single three-level trapped ion with two laser beams has been studied theoretically. With application of two successive unitary transformations, an analytical solution to this quantum system has be...The interaction of a single three-level trapped ion with two laser beams has been studied theoretically. With application of two successive unitary transformations, an analytical solution to this quantum system has been obtained.展开更多
We study the dynamics of a two-level trapped ion in a standing wave electromagnetic field in two-dimensional (2D) noncommutative spaces in the Lamb-Dicke regime under the rotating wave approximation. We obtain the ...We study the dynamics of a two-level trapped ion in a standing wave electromagnetic field in two-dimensional (2D) noncommutative spaces in the Lamb-Dicke regime under the rotating wave approximation. We obtain the explicit analytical expressions for the energy spectra, energy eigenstates, unitary time evolution operator, atomic inversion, and phonon number operators. The Rabi oscillations, the collapse, and revivals in the average atomic inversion and the average phonon number are explicitly shown to contain the information of the parameter of the space noncommutativity, which sheds light on proposing new schemes based on the dynamics of trapped ion to test the noncommutativity.展开更多
Non-metallic particles and metallic impurities present in the feedstock affect the electrical and mechanical properties of high quality silicon which is used in critical applications such as photovoltaic solar cells a...Non-metallic particles and metallic impurities present in the feedstock affect the electrical and mechanical properties of high quality silicon which is used in critical applications such as photovoltaic solar cells and electronic devices. SiC particles strongly deteriorate the mechanical properties of photovoltaic cells and cause shunting problem. Therefore, these particles should be removed from silicon before solar cells are fabricated from this material. Separation of non-metallic particles from liquid metals by imposing an electromagnetic field was identified as an enhanced technology to produce ultra pure metals. Application of this method for removal of SiC particles from metallurgical grade silicon (MG-Si) was presented. Numerical methods based on a combination of classical models for inclusion removal and computational fluid dynamics (CFD) were developed to calculate the particle concentration and separation efficiency from the melt. In order to check efficiency of the method, several experiments were done using an induction furnace. The experimental results show that this method can be effectively applied to purifying silicon melts from the non-metallic inclusions. The results are in a good agreement with the predictions made by the model.展开更多
The ultrafast dynamics of benzaldehyde upon 260, 271, 284, and 287 nm excitations have been studied by femtosecond pinup-probe time-of-flight mass spectrometry. A bi-exponential decay component model was applied to fi...The ultrafast dynamics of benzaldehyde upon 260, 271, 284, and 287 nm excitations have been studied by femtosecond pinup-probe time-of-flight mass spectrometry. A bi-exponential decay component model was applied to fit the transient profiles of benzaldehyde ions and fragment ions. At the S2 origin, the first decay of the component was attributed to the internal conversion to the high vibrational levels of S1 state. Lifetimes of the first component decreased with increasing vibrational energy, due to the influence of high density of the vibrational levels. The second decay was assigned to the vibrational relaxation of the S1 whose lifetime was about 600 fs. Upon 287 nm excitation, the first decay became ultra-short (-56 fs) which was taken for the intersystem cross from S1 to T2, while the second decay component was attributed to the vibrational relaxation. The pump-probe transient of fragment was also studied with the different probe intensity at 284 nm pump.展开更多
The deep-level traps at grain boundaries(GBs)and halide ion migration are quite challenging for further enhancement of the stability and efficiency of perovskite solar cells(PSCs)as well as for the elimination of noto...The deep-level traps at grain boundaries(GBs)and halide ion migration are quite challenging for further enhancement of the stability and efficiency of perovskite solar cells(PSCs)as well as for the elimination of notorious hysteresis.Herein,we report a large-sized strongly coordinated organic anion GB anchoring strategy for suppressing ion migration and passivating defects in planar PSCs.The practical implementation of this strategy involves the incorporation of potassium salts containing a large-sized organic counter anion(4-sulfobenzoic acid monopotassium salt,SAMS)into the perovskite precursor.It has been found that anions within SAMS can be firmly anchored at GBs due to the strong coordination interaction between C=O and/or S=O at both ends of bulky anion and undercoordinated Pb^(2+)and/or halide vacancies,along with the hydrogen bond between–OH and formamidinium.SAMS can not only passivate shallowlevel defects but also cause more effective passivation of the deep-level defects.The GB manipulation strategy results in a reduced defect density,an increased carrier lifetime as well as suppressed ion migration,which in turn contributed to enhanced efficiency and stability of PSCs together with a thorough elimination of hysteresis.As a result,the SAMSmodified device with an outstanding fill factor of 0.84 delivers a significant improvement in efficiency(22.7%)in comparison with the control device(20.3%).The unencapsulated modified device demonstrates only little degradation after 1320 h at 60℃.展开更多
The white upconversion luminescence (UCL) of upconversion nanoparticles (UCNPs) is mainly made up of the color red, green and blue. Interestingly, the white-light-emitting UCNPs can be obtained via a complex metho...The white upconversion luminescence (UCL) of upconversion nanoparticles (UCNPs) is mainly made up of the color red, green and blue. Interestingly, the white-light-emitting UCNPs can be obtained via a complex method of tridoping lanthanide ions such as Yb^3+, Er^3+, and Tm^3+. We herein report that an excellent white UCL can be obtained from Yb/Tm double-doped ZnO. In this system, the blue and red UCL-emissions around 475 and 652 nm originate from ^1G4→^3H6 and ^1G4→^3F4 transition of Tm^3+, respectively, and the green one can be attributed to the defect states (oxygen va- cancies) luminescence (DSL) of the ZnO host. Meanwhile, the fine nanostructure of ZnO:Yb/Tm is prepared by adjusting the concentration of OH-. Particularly, the one dimentional pencil-shaped nanorods with high aspect ratio achieve a strong green DSL emission due to the high concentration of oxygen vacancy. The oxygen vacancy defects play an irreplaceable role in affecting the intensities of blue and red UCL by acting as the intermediate state in the energy transfer process. More importantly, we demonstrate that the DSL and UCL can be combined into systems, paving a new road for obtaining the white UCL emission.展开更多
Self-assembled Fe_(3)O_(4)hierarchical microspheres(HMSs) were prepared by a one-pot synchronous reduction–self-assembling (SRSA) hydrothermal method.In this simple and inexpensive synthetic process,only glycerol,wat...Self-assembled Fe_(3)O_(4)hierarchical microspheres(HMSs) were prepared by a one-pot synchronous reduction–self-assembling (SRSA) hydrothermal method.In this simple and inexpensive synthetic process,only glycerol,water,and a single iron source (potassium ferricyanide (K3[Fe(CN)6]))were employed as reactants without additional reductants,surfactants,or additives.The iron source,K3[Fe(CN)6],and glycerol significantly affected the synthesis of Fe_(3)O_(4)HMSs.Fe_(3)O_(4)HMSs with a self-assembled spherical shape readily functioned as high-performance anode materials for lithiumion batteries with a specific capacity of>1000 mA h g^(-1)at0.5 A g^(-1)after 270 cycles.Further charging and discharging results revealed that Fe_(3)O_(4)HMSs displayed good reversible performance (>1000 mA h g^(-1)) and cycling stability (700 cycles) at 0.5 A g^(-1).Furthermore,as multifunctional materials,the as-obtained Fe_(3)O_(4)HMSs also exhibited high saturation magnetization (99.5 emu g^(-1)) at room temperature (25°C) and could be further employed as efficient and magnetically recyclable catalysts for the hydrogenation of nitro compounds.展开更多
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.11275024) and the Ministry of Science and Technology of China (No.2013YQ03059503 and No.2011AA120101). The authors would like to thank Prof. R. W. M. Kwok from the Chinese University of Hong Kong.
文摘The irradiation effects of Ar+, He+, and S+ with energy from 10 eV to 180 eV on n-InP(100) surface are analyzed by X-ray photoelectron spectroscopy and low energy electron diffraction. After irradiation on the n-InP surface, damage on the surface, displacement of the Fermilevel and formation of sulfur species on S+ exposed surface are found and studied. Successive annealing is done to suppress the surface states introduced by S+ exposure. However, it is unsuccessful in removing the damage caused by noble ions. Besides, S+ ions can efficiently repair the Ar+ damaged surface, and finally form a fine 2×2 InP surface.
基金The project supported by the Natural Science Foundation of Education Committee of Anhui Province of China under Grant No. 2004kj186
文摘The interaction of a single three-level trapped ion with two laser beams has been studied theoretically. With application of two successive unitary transformations, an analytical solution to this quantum system has been obtained.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10575040, 90503010, 60478029, and 10634060, and the State Key Basic Research Program of China under Grant No. 2005CB724508
文摘We study the dynamics of a two-level trapped ion in a standing wave electromagnetic field in two-dimensional (2D) noncommutative spaces in the Lamb-Dicke regime under the rotating wave approximation. We obtain the explicit analytical expressions for the energy spectra, energy eigenstates, unitary time evolution operator, atomic inversion, and phonon number operators. The Rabi oscillations, the collapse, and revivals in the average atomic inversion and the average phonon number are explicitly shown to contain the information of the parameter of the space noncommutativity, which sheds light on proposing new schemes based on the dynamics of trapped ion to test the noncommutativity.
文摘Non-metallic particles and metallic impurities present in the feedstock affect the electrical and mechanical properties of high quality silicon which is used in critical applications such as photovoltaic solar cells and electronic devices. SiC particles strongly deteriorate the mechanical properties of photovoltaic cells and cause shunting problem. Therefore, these particles should be removed from silicon before solar cells are fabricated from this material. Separation of non-metallic particles from liquid metals by imposing an electromagnetic field was identified as an enhanced technology to produce ultra pure metals. Application of this method for removal of SiC particles from metallurgical grade silicon (MG-Si) was presented. Numerical methods based on a combination of classical models for inclusion removal and computational fluid dynamics (CFD) were developed to calculate the particle concentration and separation efficiency from the melt. In order to check efficiency of the method, several experiments were done using an induction furnace. The experimental results show that this method can be effectively applied to purifying silicon melts from the non-metallic inclusions. The results are in a good agreement with the predictions made by the model.
基金V. ACKNOWLEDGMENT This work was supported by the National Natural Science Foundation of China (No.20633070 and No.20473090).
文摘The ultrafast dynamics of benzaldehyde upon 260, 271, 284, and 287 nm excitations have been studied by femtosecond pinup-probe time-of-flight mass spectrometry. A bi-exponential decay component model was applied to fit the transient profiles of benzaldehyde ions and fragment ions. At the S2 origin, the first decay of the component was attributed to the internal conversion to the high vibrational levels of S1 state. Lifetimes of the first component decreased with increasing vibrational energy, due to the influence of high density of the vibrational levels. The second decay was assigned to the vibrational relaxation of the S1 whose lifetime was about 600 fs. Upon 287 nm excitation, the first decay became ultra-short (-56 fs) which was taken for the intersystem cross from S1 to T2, while the second decay component was attributed to the vibrational relaxation. The pump-probe transient of fragment was also studied with the different probe intensity at 284 nm pump.
基金the Support Plan for Overseas Students to Return to China for Entrepreneurship and Innovation(cx2020003)the Fundamental Research Funds for the Central Universities(2020CDJQY-A028 and 2020CDJ-LHZZ-074)the Natural Science Foundation of Chongqing(cstc2020jcyj-msxmX0629)。
文摘The deep-level traps at grain boundaries(GBs)and halide ion migration are quite challenging for further enhancement of the stability and efficiency of perovskite solar cells(PSCs)as well as for the elimination of notorious hysteresis.Herein,we report a large-sized strongly coordinated organic anion GB anchoring strategy for suppressing ion migration and passivating defects in planar PSCs.The practical implementation of this strategy involves the incorporation of potassium salts containing a large-sized organic counter anion(4-sulfobenzoic acid monopotassium salt,SAMS)into the perovskite precursor.It has been found that anions within SAMS can be firmly anchored at GBs due to the strong coordination interaction between C=O and/or S=O at both ends of bulky anion and undercoordinated Pb^(2+)and/or halide vacancies,along with the hydrogen bond between–OH and formamidinium.SAMS can not only passivate shallowlevel defects but also cause more effective passivation of the deep-level defects.The GB manipulation strategy results in a reduced defect density,an increased carrier lifetime as well as suppressed ion migration,which in turn contributed to enhanced efficiency and stability of PSCs together with a thorough elimination of hysteresis.As a result,the SAMSmodified device with an outstanding fill factor of 0.84 delivers a significant improvement in efficiency(22.7%)in comparison with the control device(20.3%).The unencapsulated modified device demonstrates only little degradation after 1320 h at 60℃.
基金supported by the National Natural Science Foundation of China (11374080)
文摘The white upconversion luminescence (UCL) of upconversion nanoparticles (UCNPs) is mainly made up of the color red, green and blue. Interestingly, the white-light-emitting UCNPs can be obtained via a complex method of tridoping lanthanide ions such as Yb^3+, Er^3+, and Tm^3+. We herein report that an excellent white UCL can be obtained from Yb/Tm double-doped ZnO. In this system, the blue and red UCL-emissions around 475 and 652 nm originate from ^1G4→^3H6 and ^1G4→^3F4 transition of Tm^3+, respectively, and the green one can be attributed to the defect states (oxygen va- cancies) luminescence (DSL) of the ZnO host. Meanwhile, the fine nanostructure of ZnO:Yb/Tm is prepared by adjusting the concentration of OH-. Particularly, the one dimentional pencil-shaped nanorods with high aspect ratio achieve a strong green DSL emission due to the high concentration of oxygen vacancy. The oxygen vacancy defects play an irreplaceable role in affecting the intensities of blue and red UCL by acting as the intermediate state in the energy transfer process. More importantly, we demonstrate that the DSL and UCL can be combined into systems, paving a new road for obtaining the white UCL emission.
基金the financial support from the National Natural Science Foundation of China (21501004,21771003,21901007 and 21671005)Anhui Provincial Natural Science Foundation for Distinguished Youth (1808085J27)。
文摘Self-assembled Fe_(3)O_(4)hierarchical microspheres(HMSs) were prepared by a one-pot synchronous reduction–self-assembling (SRSA) hydrothermal method.In this simple and inexpensive synthetic process,only glycerol,water,and a single iron source (potassium ferricyanide (K3[Fe(CN)6]))were employed as reactants without additional reductants,surfactants,or additives.The iron source,K3[Fe(CN)6],and glycerol significantly affected the synthesis of Fe_(3)O_(4)HMSs.Fe_(3)O_(4)HMSs with a self-assembled spherical shape readily functioned as high-performance anode materials for lithiumion batteries with a specific capacity of>1000 mA h g^(-1)at0.5 A g^(-1)after 270 cycles.Further charging and discharging results revealed that Fe_(3)O_(4)HMSs displayed good reversible performance (>1000 mA h g^(-1)) and cycling stability (700 cycles) at 0.5 A g^(-1).Furthermore,as multifunctional materials,the as-obtained Fe_(3)O_(4)HMSs also exhibited high saturation magnetization (99.5 emu g^(-1)) at room temperature (25°C) and could be further employed as efficient and magnetically recyclable catalysts for the hydrogenation of nitro compounds.