期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
La_(0.6)Sr_(0.4)Co_(1-y)Fe_yO_3钙钛矿复合氧化物的GNP法合成与导电性能 被引量:7
1
作者 徐庆 黄端平 +2 位作者 陈文 王皓 袁润章 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2003年第12期2271-2274,共4页
采用甘氨酸 -硝酸盐 ( GNP)法合成出 La0 .6Sr0 .4Co1-y Fey O3 ( y=0~ 1 .0 )体系复合氧化物 ,对合成产物的结构、烧结性能和导电性进行了表征 .研究结果表明 ,不同 n( Co) / n( Fe)比的合成粉料中形成菱形六面体钙钛矿结构 ,合成粉... 采用甘氨酸 -硝酸盐 ( GNP)法合成出 La0 .6Sr0 .4Co1-y Fey O3 ( y=0~ 1 .0 )体系复合氧化物 ,对合成产物的结构、烧结性能和导电性进行了表征 .研究结果表明 ,不同 n( Co) / n( Fe)比的合成粉料中形成菱形六面体钙钛矿结构 ,合成粉料的颗粒细小均匀 .在室温~ 90 0℃范围内 ,La0 .6Sr0 .4Co O3 ( y=0 )的电导率随温度的升高而单调降低 ,其它 n( Co) / n( Fe)比的样品电导率随着温度升高到 60 0℃附近时达到最大值 .在低温段 ,La0 .6Sr0 .4Co1-y Fey O3 体系的导电行为符合小极化子导电机制 ,导电活化能随 n( Co) / n( Fe)比的降低而增大 .与常规固相合成法相比 ,甘氨酸 -硝酸盐法制备的 La0 .6Sr0 .4Co1-y Fey O3 具有更高的烧结活性和电导率 . 展开更多
关键词 La0.6Sr0.4Co1-yFeyO3 钙钛矿复合氧化物 合成 表征 结构性能 导电性能 甘氨酸-硝酸盐法 电子-离子混合导电
下载PDF
SrCo(0.8)Fe(0.2)O(3-δ)管状非对称陶瓷膜的制备与氧渗透研究 被引量:4
2
作者 樊传刚 黄祥贤 +1 位作者 刘卫 陈初升 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2008年第6期1221-1224,共4页
用共烧法制备了以(SrCo_(0.8)Fe_(0.2)O_(3-δ))_(0.85)(SrSnO_3)_(0.15)(SCF-SS)多孔层为支撑体和SrCo_(0.8)Fe_(0.2)O_(3-δ) (SCF)致密层为顶层膜的管状非对称透氧陶瓷膜;并对其相组成、微形貌以及氧分离性能进行了表征.研究发现:SCF... 用共烧法制备了以(SrCo_(0.8)Fe_(0.2)O_(3-δ))_(0.85)(SrSnO_3)_(0.15)(SCF-SS)多孔层为支撑体和SrCo_(0.8)Fe_(0.2)O_(3-δ) (SCF)致密层为顶层膜的管状非对称透氧陶瓷膜;并对其相组成、微形貌以及氧分离性能进行了表征.研究发现:SCF和SCF-SS之间有较好的兼容性;当共烧温度为1150℃时,获得的非对称陶瓷膜的致密层厚度为50μm,支撑体的显气孔率为19.3%;900和800℃时,非对称膜样品(壁厚1.4mm,外径10.3mm,长度为4.1cm)的氧渗透率分别为1.91和1.01mL·cm^(-2)·min^(-1),分别比同样几何尺寸的SCF对称膜样品高24%和36%. 展开更多
关键词 管状非对称陶瓷膜 氧分离 离子-电子混合导电 钙钛矿
下载PDF
La_(0.6)Sr_(0.4)Co_(1-y)Fe_yO_3钙矿复合氧化物的结构与电学性能 被引量:10
3
作者 徐庆 黄端平 +2 位作者 陈文 王皓 袁润章 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2004年第2期132-135,共4页
采用固相反应法合成出La_(0.6)Sr_(0.4)Co_(1-y)Fe_yO_3体系复合氧化物样品,XRD分析结果证实不同Co/Fe比例的样品中均形成菱形六面体钙钛矿结构,采用固相烧结法制备出致密的La_(0.6)Sr(0.4)Co_(1-y)Fe_yO_3体系陶瓷。研究结果表明,在室... 采用固相反应法合成出La_(0.6)Sr_(0.4)Co_(1-y)Fe_yO_3体系复合氧化物样品,XRD分析结果证实不同Co/Fe比例的样品中均形成菱形六面体钙钛矿结构,采用固相烧结法制备出致密的La_(0.6)Sr(0.4)Co_(1-y)Fe_yO_3体系陶瓷。研究结果表明,在室温到900℃温度范围内La_(0.6)Sr_(0.4)CoO_3(y=0)的电导率随温度的增加而单调降低,其它Co/Fe比例样品的电导率随着温度的增加出现最大值,电导率达到最大值的温度随Co/Fe比例的降低而提高。在低温段,La_(0.6)Sr_(0.4)Co_(1-y)Fe_yO_3体系的导电行为符合小极子导电机制,导电活化能随Co/Fe比例的降低而增加。 展开更多
关键词 钙钛矿结构复合氧化物 La0.6Sr0.4Co1-yFeyO3 电子-离子混合导电 结构
下载PDF
Post-annealing tailored 3D cross-linked TiNb2O7 nanorod electrode: towards superior lithium storage for flexible lithium-ion capacitors 被引量:1
4
作者 Bohua Deng Haoyang Dong +3 位作者 Tianyu Lei Ning Yue Liang Xiao Jinping Liu 《Science China Materials》 SCIE EI CSCD 2020年第4期492-504,共13页
TiNb2O7 anode materials(TNO)have unique potential for applications in Li-ion capacitors(LICs)due to their high specific capacity of ca.280 mA h g^-1 over a wide anodic Li-insertion potential window.However,their highr... TiNb2O7 anode materials(TNO)have unique potential for applications in Li-ion capacitors(LICs)due to their high specific capacity of ca.280 mA h g^-1 over a wide anodic Li-insertion potential window.However,their highrate capability is limited by their poor electronic and ionic conductivity.In particular,studies on TNO for LICs are lacking and that for flexible LICs have not yet been reported.Herein,a unique TNO porous electrode with cross-linked nanorods tailored by post-annealing and its application in flexible LICs are reported.This binder-free TNO anode exhibits superior rate performance(~66.3%capacity retention as the rate increases from 1 to 40 C),which is ascribed to the greatly shortened ion-diffusion length in TNO nanorods,facile electrolyte penetration and fast electron transport along the continuous single-crystalline nanorod network.Furthermore,the TNO anode shows an excellent cycling stability up to 2000 cycles and good flexibility(no capacity loss after continuous bending for 500 times).Model flexible LIC assembled with the TNO anode and activated carbon cathode exhibits increased gravimetric and volumetric energy/power densities(~100.6 W h kg^-1/4108.8 W kg^-1;10.7 mW h cm^-3/419.3 mW cm^-3),more superior to previously reported hybrid supercapacitors.The device also efficiently powers an LED light upon 180°bending. 展开更多
关键词 POST-ANNEALING cross-linked nanorods facile electron transport superior rate performance flexible Li-ion capacitors
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部