In order to improve the cycle and rate performance of LiNi0.5Mn1.5O4, LiCr2 Ni0.5 Mn1.5 O (0≤Y≤0.15) particles were Y -Y -Y 4 synthesized by the sucrose-aided combustion method. The effects of Cr doping in LiNi0.5...In order to improve the cycle and rate performance of LiNi0.5Mn1.5O4, LiCr2 Ni0.5 Mn1.5 O (0≤Y≤0.15) particles were Y -Y -Y 4 synthesized by the sucrose-aided combustion method. The effects of Cr doping in LiNi0.5Mn1.5O4 on the structures and electrochemical properties were investigated. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), galvanostatic charge-discharge test and electrochemical impedance spectrum (EIS). The results indicate that the LiCr2 Ni0.5 Mn1.5 O possess a spinel structure and small particle size, and LiCr0.2Ni0.4Mn1.4O4exhibits Y -Y -Y 4 the best cyclic and rate performance. It can deliver discharge capacities of 143 and 104 mA·h/g at 1C and 10C, respectively, with good capacity retention of 96.5% at 1C after 50 cycles.展开更多
A centrifugal fan with the high speed and compact dimensions is studied numerically and experimentally. The centrifugal fan consists of a shrouded impeller rotating at 34 000 r/min with a small tip clearance 0.7 mm to...A centrifugal fan with the high speed and compact dimensions is studied numerically and experimentally. The centrifugal fan consists of a shrouded impeller rotating at 34 000 r/min with a small tip clearance 0.7 mm to the fixed outer casing. Computational models with/without the tip clearance are built and the κ-ω shear stress transport (SST) turbulence model and the unstructured mesh are applied to the numerical simulation for unsteady solutions. The overall performance is measured on a standard experimental bench and the major flow feature of each component inside the centrifugal fan is numerically investigated. In the presence of the tip clearance due to the difference of static pressure between leading and trailing edges of the clearance, i. e. , leading and trailing edges of the impeller, a strong return flow exists inside the clearance passage and re-circulates the main stream inside the impeller passage, and produces the strong flow interaction, thus changing the flow field and influencing the overall performance.展开更多
Cation substitution in spinel cobaltites(e.g.,ACo2O4,in which A=Mn,Fe,Co,Ni,Cu,or Zn)is a promising strategy to precisely modulate their electronic structure/properties and thus improve the corresponding electrochemic...Cation substitution in spinel cobaltites(e.g.,ACo2O4,in which A=Mn,Fe,Co,Ni,Cu,or Zn)is a promising strategy to precisely modulate their electronic structure/properties and thus improve the corresponding electrochemical performance for water splitting.However,the fundamental principles and mechanisms are not fully understood.This research aims to systematically investigate the effects of cation substitution in spinel cobaltites derived from mixed-metal-organic frameworks on the oxygen evolution reaction(OER).Among the obtained ACo2O4 catalysts,FeCo2O4 showed excellent OER performance with a current density of 10 mA·cm^-2 at an overpotential of 164 mV in alkaline media.Both theoretical calculations and experimental results demonstrate that the Fe substitution in the crystal lattice of ACo2O4 can significantly accelerate charge transfer,thereby achieving enhanced electrochemical properties.The crystal field of spinel ACo2O4,which determines the valence states of cations A,is identified as the key factor to dictate the OER performance of these spinel cobaltites.展开更多
In this work the surface of LiNi0.5Mn1.5O4(LMN)particles is modified by Mn3O4 coating through a simple wet grinding method,the electronic conductivity is significantly improved from 1.53×10^-7 S/cm to 3.15×1...In this work the surface of LiNi0.5Mn1.5O4(LMN)particles is modified by Mn3O4 coating through a simple wet grinding method,the electronic conductivity is significantly improved from 1.53×10^-7 S/cm to 3.15×10^-5 S/cm after 2.6 wt%Mn3O4 coating.The electrochemical test results indicate that Mn3O4 coating dramatically enhances both rate performance and cycling capability(at 55℃)of LNM.Among the samples,2.6 wt%Mn3O4-coated LNM not only exhibits excellent rate capability(a large capacity of 108 m Ah/g at 10 C rate)but also shows 78%capacity retention at 55 ℃ and 1 C rate after 100 cycles.展开更多
A series of spinel Li-Mn-Ni composite oxides with theoretical chemical formula of LiNixMn2-xO4 (0〈_x〈_1.0) were synthesized by liquid phase method. Their structure and morphology were characterized by X-ray diffra...A series of spinel Li-Mn-Ni composite oxides with theoretical chemical formula of LiNixMn2-xO4 (0〈_x〈_1.0) were synthesized by liquid phase method. Their structure and morphology were characterized by X-ray diffractometry (XRD) and scanning electron microscopy (SEM), respectively. The stability of these Ni-substituted spinel oxides prepared at different temperatures was investigated in acidic medium as well. The results show that Ni can be brought into the spinel framework completely to form well-crystallized product when x〈_0.5 and the optimized synthesis temperature is 800℃. LiNi0.4Mn1.6O4 prepared at 800℃ can maintain the spinel structure and morphology with Li extraction ratio of 30.37%, Mn extraction ratio of 8.78% and Ni extraction ratio of 1,82% during acid treatment. The incorporated Ni not only inhibits the dissolution of Mn, but also reduces the extraction of Li due to the lattice contraction展开更多
The most remarkable effect in spinel ferrites is the strong dependence of properties on the state of structural disorder and,in particular,on the cation distribution.The structural characterization of a Co-Zn ferrite ...The most remarkable effect in spinel ferrites is the strong dependence of properties on the state of structural disorder and,in particular,on the cation distribution.The structural characterization of a Co-Zn ferrite nanoparticle sample was reported which prepared by wet chemical co-precipitation method.The samples were sintered at three different temperatures viz.650℃,850℃ and 1050℃ for 12 h.The structural details like:lattice constant and distribution of cations in the tetrahedral and octahedral interstitial voids have been deduced through X-ray diffraction (XRD) data analysis.Lattice constant was found to increase with the increase in Zn2+ ions and sintering temperature.Theoretical intensity ratios of (220),(400),(440) planes were considered,as these reflections are sensitive to cations on the A and B sites.Close agreement of the theoretical intensity ratio with the intensity ratio observed from XRD pattern supports the occupancy of Zn2+ ions and Co2+ ions on the octahedral and tetrahedral sites,respectively.展开更多
Fungal diseases often occur seriously in muskmelon in open field of Hubei Province in summer, especially in continuous cropping pattern, resulting in great economic losses. In this study, the pathogens of main fungal ...Fungal diseases often occur seriously in muskmelon in open field of Hubei Province in summer, especially in continuous cropping pattern, resulting in great economic losses. In this study, the pathogens of main fungal diseases in muskmelon in open field of Hubei Province were isolated, and they were identified by morphological and molecular techniques. The results showed that muskmelon fusarium wilt is a major disease in muskmelon in open field of Hubei Province in summer, and its pathogen was confirmed to be Fusarium oxysporum. In future studies, one pair of specific primers would be designed to detect different pathogenic races of Fusarium oxysporum so as to accelerate the detection and to shorten the detection time,thereby proving guidance for actual production.展开更多
Increasing demand for downsizing of engines to improve CO2 emissions has resulted in renewed efforts to improve the efficiency and expend the stable operating range of the centrifugal compressors used in petro-chemica...Increasing demand for downsizing of engines to improve CO2 emissions has resulted in renewed efforts to improve the efficiency and expend the stable operating range of the centrifugal compressors used in petro-chemical equipment and turbochargers. The losses in these compressors are dominated by tip clearance flow. In this paper, the tip clearance flow in the subsonic impeller is numerically investigated. The nature of the tip clearance in inducer, axial to radial bend and exducer are studied in detail at design and off-design conditions by examining the detailed flow field through the clearance and the interaction of the clearance flow with the shear effect with the endwalls. The correlation between blade loading and span wise geometry and clearance flow at different locations are presented.展开更多
Since the high-voltage spinel LiNi0.5Mn1504 (LNMO) is one of the most attractive cathode materials for lithium-ion batteries, how to improve the cycling and rate performance simultaneously has become a critical ques...Since the high-voltage spinel LiNi0.5Mn1504 (LNMO) is one of the most attractive cathode materials for lithium-ion batteries, how to improve the cycling and rate performance simultaneously has become a critical question. Nanosizing is a typical strategy to achieve high rate capability due to drastically shortened Li- ion diffusion distances. However, the high surface area of nanosized particles increases the side reaction with the electrolyte, which leads to poor cycling performance. Spinels with disordered structures could also lead to improved rate capability, but the cyclability is low due to the presence of Mn3+ ions. Herein, we systematically investigated the synergic interaction between particle size and cation ordering. Our results indicated that a microsized disordered phase and a nanosized ordered phase of LNMO materials exhibited the best combination of high rate capability and cycling performance.展开更多
The ventilators have been vividly called "the lungs of mine". The rotating blades are the core parts of a ventilator, they can influence the safety and reliability of the ventilator. This paper will use the tip-timi...The ventilators have been vividly called "the lungs of mine". The rotating blades are the core parts of a ventilator, they can influence the safety and reliability of the ventilator. This paper will use the tip-timing method based on the fiber Bragg grating magnetically coupling sensor to study and analyze the ventilator blade vibration, in order to realize long-distance and non-contact real-time online safety monitoring of blade vibration. Compared with the electronic sensorand fiber intensity reflective sensor, the fiber grating coupling magnetic sensor has such advantages as explosion-proof, working at harsh environment with humid air, dust and greasy dirt, capable of achieving long-distance signal transmission, and joining easily with other fiber Bragg grating sensors to form a network in order to achieve multi-parameter distributed online monitoring.展开更多
We investigate the orbitM ordering quantitatively for the spinel systems RV204 (R=Mg, Zn, Cd) in the viewpoint of single-ion physics through the method of diagonalization. Through the quantitative calculation, it is...We investigate the orbitM ordering quantitatively for the spinel systems RV204 (R=Mg, Zn, Cd) in the viewpoint of single-ion physics through the method of diagonalization. Through the quantitative calculation, it is found that the spin-orbit (SO)coupling and the Jahn-Teller (JT) effect enable the orbital ordering under the conditions of negligible electron hopping among different V3+ sites. For the systems RV204, the electron hopping is implied to be observable from the energy gap in conductivity, so the orbital ordering of RV2 04 cannot be induced by the SO coupling and JT effect at definite temperature, which is on contrary to the conclusions in [Phys. Rev. Lett. 93 (2004) 157206].展开更多
Tip-enhanced Raman spectrum(TERS) is a scanning probe technique for acquiring chemical information at high spatial resolution and with high chemical sensitivity. The sensitivity of TERS with atomic force microscopy(AF...Tip-enhanced Raman spectrum(TERS) is a scanning probe technique for acquiring chemical information at high spatial resolution and with high chemical sensitivity. The sensitivity of TERS with atomic force microscopy(AFM) system is mainly determined by the metalized tips. Here, we report a fabrication protocol for AFM-TERS tips that incorporate a copper(Cu) primer film between a gold(Au) layer and a Si AFM tip. They were fabricated by coating the Si tip with a 2 nm Cu layer prior to adding a 20 nm Au layer. For top illumination TERS experiments, these tips exhibited superior TERS performance relative to that observed for tips coated with Au only. Samples included graphene, thiophenol and brilliant cresyl blue. The results may derive from the surface roughness of the tip apex and a Cu/Au synergism of local surface plasmon resonances.展开更多
Lithium-rich layered oxide(LLO)cathode materials have drawn extensive attention due to their ultrahigh specific capacity and energy density.However,their commercialization is still restricted by their low initial coul...Lithium-rich layered oxide(LLO)cathode materials have drawn extensive attention due to their ultrahigh specific capacity and energy density.However,their commercialization is still restricted by their low initial coulombic efficiency,slow intrinsic kinetics and structural instability.Herein,a facile surface treatment strategy via gaseous phosphine was designed to improve the rate performance and capacity stability of LLOs.During the solid-gas reaction,phosphine reacted with active oxygen at the surface of LLOs due to its reductivity,forming oxygen vacancies and spinel phase at the surface region.As a result,Li ion conductivity and structural stability were greatly enhanced.The phosphinetreated LLOs(LLO@P)showed a layered-spinel hybrid structure and delivered an outstanding rate performance of156.7 mA h g^-1 at 10 C and a high capacity retention of 74%after 300 cycles at 5 C.展开更多
基金Project(2007BA201055)supported by the National Science and Technology Support Program,China
文摘In order to improve the cycle and rate performance of LiNi0.5Mn1.5O4, LiCr2 Ni0.5 Mn1.5 O (0≤Y≤0.15) particles were Y -Y -Y 4 synthesized by the sucrose-aided combustion method. The effects of Cr doping in LiNi0.5Mn1.5O4 on the structures and electrochemical properties were investigated. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), galvanostatic charge-discharge test and electrochemical impedance spectrum (EIS). The results indicate that the LiCr2 Ni0.5 Mn1.5 O possess a spinel structure and small particle size, and LiCr0.2Ni0.4Mn1.4O4exhibits Y -Y -Y 4 the best cyclic and rate performance. It can deliver discharge capacities of 143 and 104 mA·h/g at 1C and 10C, respectively, with good capacity retention of 96.5% at 1C after 50 cycles.
文摘A centrifugal fan with the high speed and compact dimensions is studied numerically and experimentally. The centrifugal fan consists of a shrouded impeller rotating at 34 000 r/min with a small tip clearance 0.7 mm to the fixed outer casing. Computational models with/without the tip clearance are built and the κ-ω shear stress transport (SST) turbulence model and the unstructured mesh are applied to the numerical simulation for unsteady solutions. The overall performance is measured on a standard experimental bench and the major flow feature of each component inside the centrifugal fan is numerically investigated. In the presence of the tip clearance due to the difference of static pressure between leading and trailing edges of the clearance, i. e. , leading and trailing edges of the impeller, a strong return flow exists inside the clearance passage and re-circulates the main stream inside the impeller passage, and produces the strong flow interaction, thus changing the flow field and influencing the overall performance.
文摘Cation substitution in spinel cobaltites(e.g.,ACo2O4,in which A=Mn,Fe,Co,Ni,Cu,or Zn)is a promising strategy to precisely modulate their electronic structure/properties and thus improve the corresponding electrochemical performance for water splitting.However,the fundamental principles and mechanisms are not fully understood.This research aims to systematically investigate the effects of cation substitution in spinel cobaltites derived from mixed-metal-organic frameworks on the oxygen evolution reaction(OER).Among the obtained ACo2O4 catalysts,FeCo2O4 showed excellent OER performance with a current density of 10 mA·cm^-2 at an overpotential of 164 mV in alkaline media.Both theoretical calculations and experimental results demonstrate that the Fe substitution in the crystal lattice of ACo2O4 can significantly accelerate charge transfer,thereby achieving enhanced electrochemical properties.The crystal field of spinel ACo2O4,which determines the valence states of cations A,is identified as the key factor to dictate the OER performance of these spinel cobaltites.
基金the National Key R&D Program of China(No.2018YFB0905400)the Fundamental Research Funds for the Central Universities(No.JZ2019HGBZ0140)+2 种基金the National Natural Science Foundation of China(No.U1630106No.51577175)China Postdoctoral Science Foundation(No.172731)。
文摘In this work the surface of LiNi0.5Mn1.5O4(LMN)particles is modified by Mn3O4 coating through a simple wet grinding method,the electronic conductivity is significantly improved from 1.53×10^-7 S/cm to 3.15×10^-5 S/cm after 2.6 wt%Mn3O4 coating.The electrochemical test results indicate that Mn3O4 coating dramatically enhances both rate performance and cycling capability(at 55℃)of LNM.Among the samples,2.6 wt%Mn3O4-coated LNM not only exhibits excellent rate capability(a large capacity of 108 m Ah/g at 10 C rate)but also shows 78%capacity retention at 55 ℃ and 1 C rate after 100 cycles.
基金Project(2008BAB35B04) supported by the National Key Technology R&D Program of ChinaProject(CX2010B111) supported by the Innovation Program of Doctoral Research of Hunan Province, ChinaProject(2010QZZD003) supported by Advanced Research Program of Central South University, China
文摘A series of spinel Li-Mn-Ni composite oxides with theoretical chemical formula of LiNixMn2-xO4 (0〈_x〈_1.0) were synthesized by liquid phase method. Their structure and morphology were characterized by X-ray diffractometry (XRD) and scanning electron microscopy (SEM), respectively. The stability of these Ni-substituted spinel oxides prepared at different temperatures was investigated in acidic medium as well. The results show that Ni can be brought into the spinel framework completely to form well-crystallized product when x〈_0.5 and the optimized synthesis temperature is 800℃. LiNi0.4Mn1.6O4 prepared at 800℃ can maintain the spinel structure and morphology with Li extraction ratio of 30.37%, Mn extraction ratio of 8.78% and Ni extraction ratio of 1,82% during acid treatment. The incorporated Ni not only inhibits the dissolution of Mn, but also reduces the extraction of Li due to the lattice contraction
文摘The most remarkable effect in spinel ferrites is the strong dependence of properties on the state of structural disorder and,in particular,on the cation distribution.The structural characterization of a Co-Zn ferrite nanoparticle sample was reported which prepared by wet chemical co-precipitation method.The samples were sintered at three different temperatures viz.650℃,850℃ and 1050℃ for 12 h.The structural details like:lattice constant and distribution of cations in the tetrahedral and octahedral interstitial voids have been deduced through X-ray diffraction (XRD) data analysis.Lattice constant was found to increase with the increase in Zn2+ ions and sintering temperature.Theoretical intensity ratios of (220),(400),(440) planes were considered,as these reflections are sensitive to cations on the A and B sites.Close agreement of the theoretical intensity ratio with the intensity ratio observed from XRD pattern supports the occupancy of Zn2+ ions and Co2+ ions on the octahedral and tetrahedral sites,respectively.
基金Supported by Earmarked Fund for China Agriculture Research System(CARS-26-34)
文摘Fungal diseases often occur seriously in muskmelon in open field of Hubei Province in summer, especially in continuous cropping pattern, resulting in great economic losses. In this study, the pathogens of main fungal diseases in muskmelon in open field of Hubei Province were isolated, and they were identified by morphological and molecular techniques. The results showed that muskmelon fusarium wilt is a major disease in muskmelon in open field of Hubei Province in summer, and its pathogen was confirmed to be Fusarium oxysporum. In future studies, one pair of specific primers would be designed to detect different pathogenic races of Fusarium oxysporum so as to accelerate the detection and to shorten the detection time,thereby proving guidance for actual production.
基金supported by the National Natural Science Foundation of China (Grant No. 51276125)the National Basic Research Program of China ("973" Project) (Grant No. 2012CB720101)
文摘Increasing demand for downsizing of engines to improve CO2 emissions has resulted in renewed efforts to improve the efficiency and expend the stable operating range of the centrifugal compressors used in petro-chemical equipment and turbochargers. The losses in these compressors are dominated by tip clearance flow. In this paper, the tip clearance flow in the subsonic impeller is numerically investigated. The nature of the tip clearance in inducer, axial to radial bend and exducer are studied in detail at design and off-design conditions by examining the detailed flow field through the clearance and the interaction of the clearance flow with the shear effect with the endwalls. The correlation between blade loading and span wise geometry and clearance flow at different locations are presented.
基金Acknowledgements This work was supported by programs of the National Basic Research Program (973 Program) of China (No. 2011CB935900), the National Natural Science Foundation of China (Nos. 21231005 and 21076108), and the Discipline Innovative Intelligence Plan (111 Project, No. B12015).
文摘Since the high-voltage spinel LiNi0.5Mn1504 (LNMO) is one of the most attractive cathode materials for lithium-ion batteries, how to improve the cycling and rate performance simultaneously has become a critical question. Nanosizing is a typical strategy to achieve high rate capability due to drastically shortened Li- ion diffusion distances. However, the high surface area of nanosized particles increases the side reaction with the electrolyte, which leads to poor cycling performance. Spinels with disordered structures could also lead to improved rate capability, but the cyclability is low due to the presence of Mn3+ ions. Herein, we systematically investigated the synergic interaction between particle size and cation ordering. Our results indicated that a microsized disordered phase and a nanosized ordered phase of LNMO materials exhibited the best combination of high rate capability and cycling performance.
文摘The ventilators have been vividly called "the lungs of mine". The rotating blades are the core parts of a ventilator, they can influence the safety and reliability of the ventilator. This paper will use the tip-timing method based on the fiber Bragg grating magnetically coupling sensor to study and analyze the ventilator blade vibration, in order to realize long-distance and non-contact real-time online safety monitoring of blade vibration. Compared with the electronic sensorand fiber intensity reflective sensor, the fiber grating coupling magnetic sensor has such advantages as explosion-proof, working at harsh environment with humid air, dust and greasy dirt, capable of achieving long-distance signal transmission, and joining easily with other fiber Bragg grating sensors to form a network in order to achieve multi-parameter distributed online monitoring.
基金Supported by the State Key Project of Fundamental Research of China,under Grant No.2010CB923403
文摘We investigate the orbitM ordering quantitatively for the spinel systems RV204 (R=Mg, Zn, Cd) in the viewpoint of single-ion physics through the method of diagonalization. Through the quantitative calculation, it is found that the spin-orbit (SO)coupling and the Jahn-Teller (JT) effect enable the orbital ordering under the conditions of negligible electron hopping among different V3+ sites. For the systems RV204, the electron hopping is implied to be observable from the energy gap in conductivity, so the orbital ordering of RV2 04 cannot be induced by the SO coupling and JT effect at definite temperature, which is on contrary to the conclusions in [Phys. Rev. Lett. 93 (2004) 157206].
基金supported by the National Basic Research Program of China(2011YQ03012415,2011CB808700)the National Natural Science Foundation of China(21127901,233010,21121063)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB12020100)
文摘Tip-enhanced Raman spectrum(TERS) is a scanning probe technique for acquiring chemical information at high spatial resolution and with high chemical sensitivity. The sensitivity of TERS with atomic force microscopy(AFM) system is mainly determined by the metalized tips. Here, we report a fabrication protocol for AFM-TERS tips that incorporate a copper(Cu) primer film between a gold(Au) layer and a Si AFM tip. They were fabricated by coating the Si tip with a 2 nm Cu layer prior to adding a 20 nm Au layer. For top illumination TERS experiments, these tips exhibited superior TERS performance relative to that observed for tips coated with Au only. Samples included graphene, thiophenol and brilliant cresyl blue. The results may derive from the surface roughness of the tip apex and a Cu/Au synergism of local surface plasmon resonances.
基金financial support from the Ministry of Science and Technology of China(MoST,2016YFA0200200)the National Natural Science Foundation of China(NSFC,21421001 and 51633002)+1 种基金Tianjin city(16ZXCLGX00100)111 Project(B12015)。
文摘Lithium-rich layered oxide(LLO)cathode materials have drawn extensive attention due to their ultrahigh specific capacity and energy density.However,their commercialization is still restricted by their low initial coulombic efficiency,slow intrinsic kinetics and structural instability.Herein,a facile surface treatment strategy via gaseous phosphine was designed to improve the rate performance and capacity stability of LLOs.During the solid-gas reaction,phosphine reacted with active oxygen at the surface of LLOs due to its reductivity,forming oxygen vacancies and spinel phase at the surface region.As a result,Li ion conductivity and structural stability were greatly enhanced.The phosphinetreated LLOs(LLO@P)showed a layered-spinel hybrid structure and delivered an outstanding rate performance of156.7 mA h g^-1 at 10 C and a high capacity retention of 74%after 300 cycles at 5 C.