The tribological behaviour of gravity die stir cast LM6alloy with graphite(Gr)and silicon nitride nanoparticles was investigated.Al?Gr?Si3N4hybrid composite,Al?Si3N4nanocomposite and Al?Gr nanocomposites were separate...The tribological behaviour of gravity die stir cast LM6alloy with graphite(Gr)and silicon nitride nanoparticles was investigated.Al?Gr?Si3N4hybrid composite,Al?Si3N4nanocomposite and Al?Gr nanocomposites were separately fabricated to investigate their frictional and wear characteristics under dry sliding conditions.EDS was used to ensure the uniform presence of nano Si3N4and graphite in the cast.L9orthogonal array method was chosen to conduct the experiments to study the effect of different applied loads(20,30and40N)and sliding distances(1,2and3km).The results showed that the respective wear rate and coefficient of friction(COF)decreased by25%and15%for hybrid composite when compared with those of Al?Si3N4nanocomposite whereas the wear rate and COF of Al?Gr was found to be very minimal.The micro Vickers hardness of the hybrid composite was14%more than that of the simple nanocomposite and there was not much notable variation for Al?Gr and Al?Si3N4nanocomposite materials.Scanning electron microscope was used to analyze the worn surface and subsurface,from which it was noted that the predominant wear mechanisms observed were abrasive for nanocomposite and both abrasive and adhesive mechanism for hybrid composite.Analysis of variance(ANOVA)and F-test were used to check the validity model and to determine the significant parameters affecting the wear rates.展开更多
The presence of a limited amount of H2S in H2-rich feed adversely affects the Pd-Cu membrane permeation performance due to the sulphidization of the membrane surface. A theoretical model was proposed to predict the S-...The presence of a limited amount of H2S in H2-rich feed adversely affects the Pd-Cu membrane permeation performance due to the sulphidization of the membrane surface. A theoretical model was proposed to predict the S-tolerant performance of the Pd-Cu membranes in presence of H2S under the industrial water-gas-shift(WGS) reaction conditions. The ideas of surface coverage and competitive adsorption thermodynamics of H2S and H2 on Pd-Cu surface were introduced in the model. The surface sulphidization of the Pd-Cu membranes mainly depended on the pressure ratio of H2S to H2, temperature and S-adsorbed surface coverage, i.e., the occurrence of sulphidization on the surface was not directly related with the bulk compositions and structures [body centered cubic and face centered cubic(bcc or fcc)] of Pd-Cu alloy membranes because of the surface segregation phenomena. The resulting equilibrium equations for the H2S adsorption/sulphidization reactions were solved to calculate the pressure ratio of H2S to H2 over a wide range of temperatures. A validation of the model was performed through a comparison between lots of literature data and the model calculations over a rather broad range of operating conditions. An extremely good agreement was obtained in the different cases, and thus, the model can serve to guide the development of S-resistant Pd alloy membrane materials for hydrogen separation.展开更多
In physics,the Klein-Gordon equation describes the motion of a quantum scalar or pseudoscalar field.Itis important to find actual values of its solutions in general timespace manifold.The paper deals with description ...In physics,the Klein-Gordon equation describes the motion of a quantum scalar or pseudoscalar field.Itis important to find actual values of its solutions in general timespace manifold.The paper deals with description ofdiscrete exterior calculus method for solving this equation numerically on space manifold and the time.The analysis ofstable condition and error for this method is also accomplished.展开更多
文摘The tribological behaviour of gravity die stir cast LM6alloy with graphite(Gr)and silicon nitride nanoparticles was investigated.Al?Gr?Si3N4hybrid composite,Al?Si3N4nanocomposite and Al?Gr nanocomposites were separately fabricated to investigate their frictional and wear characteristics under dry sliding conditions.EDS was used to ensure the uniform presence of nano Si3N4and graphite in the cast.L9orthogonal array method was chosen to conduct the experiments to study the effect of different applied loads(20,30and40N)and sliding distances(1,2and3km).The results showed that the respective wear rate and coefficient of friction(COF)decreased by25%and15%for hybrid composite when compared with those of Al?Si3N4nanocomposite whereas the wear rate and COF of Al?Gr was found to be very minimal.The micro Vickers hardness of the hybrid composite was14%more than that of the simple nanocomposite and there was not much notable variation for Al?Gr and Al?Si3N4nanocomposite materials.Scanning electron microscope was used to analyze the worn surface and subsurface,from which it was noted that the predominant wear mechanisms observed were abrasive for nanocomposite and both abrasive and adhesive mechanism for hybrid composite.Analysis of variance(ANOVA)and F-test were used to check the validity model and to determine the significant parameters affecting the wear rates.
基金Supported by the National Natural Science Foundation of China(50972038)the National Natural Science Foundation of Hebei Province(B2009000739,B2014209258)Science and Technology Support Program of Hebei Province(09215142D)
文摘The presence of a limited amount of H2S in H2-rich feed adversely affects the Pd-Cu membrane permeation performance due to the sulphidization of the membrane surface. A theoretical model was proposed to predict the S-tolerant performance of the Pd-Cu membranes in presence of H2S under the industrial water-gas-shift(WGS) reaction conditions. The ideas of surface coverage and competitive adsorption thermodynamics of H2S and H2 on Pd-Cu surface were introduced in the model. The surface sulphidization of the Pd-Cu membranes mainly depended on the pressure ratio of H2S to H2, temperature and S-adsorbed surface coverage, i.e., the occurrence of sulphidization on the surface was not directly related with the bulk compositions and structures [body centered cubic and face centered cubic(bcc or fcc)] of Pd-Cu alloy membranes because of the surface segregation phenomena. The resulting equilibrium equations for the H2S adsorption/sulphidization reactions were solved to calculate the pressure ratio of H2S to H2 over a wide range of temperatures. A validation of the model was performed through a comparison between lots of literature data and the model calculations over a rather broad range of operating conditions. An extremely good agreement was obtained in the different cases, and thus, the model can serve to guide the development of S-resistant Pd alloy membrane materials for hydrogen separation.
基金Supported by China Postdoctoral Science Foundation under Grant No.20090460102 Zhejiang Province Postdoctoral Science Foundation,National Key Basic Research Program of China under Grant No.2004CB318000 National Natural Science Foundation of China under Grant No.10871170
文摘In physics,the Klein-Gordon equation describes the motion of a quantum scalar or pseudoscalar field.Itis important to find actual values of its solutions in general timespace manifold.The paper deals with description ofdiscrete exterior calculus method for solving this equation numerically on space manifold and the time.The analysis ofstable condition and error for this method is also accomplished.