Fluid pressure variations due to process fluctuations or balance drum seal degradation can result in rotor thrust increasing that may jeopardize thrust bearing and compressor’s reliability. Also, the leakage flow thr...Fluid pressure variations due to process fluctuations or balance drum seal degradation can result in rotor thrust increasing that may jeopardize thrust bearing and compressor’s reliability. Also, the leakage flow through balance drum seal can seriously affect the efficiency of compressor. A method that can improve both the efficiency and reliability of centrifugal compressor is presented. The method focused on rotor thrust control and balance drum seal upgrading. The low leakage feature of Dry-Gas-Seal(DGS), high reliability of labyrinth, and the feasibility of upgrading existing structure are taken into account at the same time to design a combined labyrinth-dry gas seal system on the balancing drum. Based on the combined seal system, a Fault Self-Recovering(FSR) system for the fault of rotor shaft displacement is introduced to assure the safety and reliability of centrifugal compressor. The modern Computational Fluid Dynamics(CFD) is used to validate this envision. The numerical result and relevant information indicate that the combined sealing system could improve the efficiency of the centrifugal compressor by about 4%.展开更多
The present study is focused on the analysis of the deterministic fluctuations arising from the rotor-stator interaction within a transonic centrifugal compressor stage. A spectral analysis applied to the unsteady flo...The present study is focused on the analysis of the deterministic fluctuations arising from the rotor-stator interaction within a transonic centrifugal compressor stage. A spectral analysis applied to the unsteady flow field leads to the values of the rotation speed of most energetic modes. From these values, the various structures are classified according to their direction of propagation which leads to a comprehensive description of the underlying mechanisms involved in the interaction.展开更多
基金Supported by the National Natural Science Foundation of China (No. 50575016 and No. 50375014)
文摘Fluid pressure variations due to process fluctuations or balance drum seal degradation can result in rotor thrust increasing that may jeopardize thrust bearing and compressor’s reliability. Also, the leakage flow through balance drum seal can seriously affect the efficiency of compressor. A method that can improve both the efficiency and reliability of centrifugal compressor is presented. The method focused on rotor thrust control and balance drum seal upgrading. The low leakage feature of Dry-Gas-Seal(DGS), high reliability of labyrinth, and the feasibility of upgrading existing structure are taken into account at the same time to design a combined labyrinth-dry gas seal system on the balancing drum. Based on the combined seal system, a Fault Self-Recovering(FSR) system for the fault of rotor shaft displacement is introduced to assure the safety and reliability of centrifugal compressor. The modern Computational Fluid Dynamics(CFD) is used to validate this envision. The numerical result and relevant information indicate that the combined sealing system could improve the efficiency of the centrifugal compressor by about 4%.
文摘The present study is focused on the analysis of the deterministic fluctuations arising from the rotor-stator interaction within a transonic centrifugal compressor stage. A spectral analysis applied to the unsteady flow field leads to the values of the rotation speed of most energetic modes. From these values, the various structures are classified according to their direction of propagation which leads to a comprehensive description of the underlying mechanisms involved in the interaction.