期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
Radial mixing and segregation of granular bed bi-dispersed both in particle size and density within horizontal rotating drum 被引量:3
1
作者 陈辉 赵先琼 +2 位作者 肖友刚 刘义伦 刘颖 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第2期527-535,共9页
Taking simultaneous variations in both particle volume and density into account, the radial mixing and segregation of binary granular bed in a rotating drum half loaded were investigated by a 3D discrete element metho... Taking simultaneous variations in both particle volume and density into account, the radial mixing and segregation of binary granular bed in a rotating drum half loaded were investigated by a 3D discrete element method. Then, based on the competition theory of condensation and percolation, radial segregation due to differences in particle volume and/or density was analyzed. The results show that if either percolation effect induced by volume difference or condensation effect induced by density difference dominates in the active layer of moving bed, separation will occur. Controlling the volume ratio or density ratio of the two types of particles can achieve an equilibrium state between percolation and condensation, and then homogenous mixture can be obtained. When the percolation balances with the condensation, the relationship between volume ratioand density ratiopresents nearly a power function. Scaling up a rotating drum will not affect the mixing degree of the granular bed so long as the volume ratio and density ratio are predefined. 展开更多
关键词 binary granular bed rotating drum solid particle radial mixing SEGREGATION discrete element method
下载PDF
颗粒振动分离的浮力计算折减修正法及数值模拟
2
作者 张志雄 修晨曦 +1 位作者 王雁然 楚锡华 《应用力学学报》 CAS CSCD 北大核心 2021年第5期1989-1994,共6页
颗粒材料在振动或流动情况下的分离行为如巴西果效应已经广为人知,为了解释这种分离行为已提出了渗透、对流、凝聚等一系列解释机制,但是尚未达成共识。本文研究颗粒上浮时所受的浮力,发现已有的大颗粒浮力计算方法无法解释大颗粒粒径... 颗粒材料在振动或流动情况下的分离行为如巴西果效应已经广为人知,为了解释这种分离行为已提出了渗透、对流、凝聚等一系列解释机制,但是尚未达成共识。本文研究颗粒上浮时所受的浮力,发现已有的大颗粒浮力计算方法无法解释大颗粒粒径改变时上浮行为不同这一典型现象。为此引入粒径比对已有的大颗粒浮力计算方法进行了修正,并证明了其合理性。此外,还研究了局部阻尼系数、振幅、颗粒密度对压强分布的影响。结果表明:所建议的修正办法能正确地计算不同粒径比下大颗粒受到的浮力;随着局部阻尼系数的增大,压强最大值增大,压强曲线下降趋势由直线变为曲线;随着颗粒密度的增大,压强最大值增大,但压强曲线下降趋势变化并不明显;随着加载振幅的增大,压强最大值与下降趋势变化均不明显。 展开更多
关键词 离散单法元 颗粒动力学 颗粒分离 浮力机制
下载PDF
Mechanical behavior and deformation mechanism of ballast bed with various fouling materials 被引量:6
3
作者 ZHANG Zhi-hai XIAO Hong +2 位作者 WANG Meng LIU Guang-peng WANG Hao-yu 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第9期2857-2874,共18页
In order to study the interaction between various fouling particles and ballast,a multi-layer and multi-scale discrete element model(DEM)including the sleeper,ballast bed and the surface layer of subgrade was develope... In order to study the interaction between various fouling particles and ballast,a multi-layer and multi-scale discrete element model(DEM)including the sleeper,ballast bed and the surface layer of subgrade was developed.Two typical fouling particles,the hard particles(sand)and soft ones(coal fines),are considered.A support stiffness test of the ballast bed under various fouling conditions was conducted to calibrate the microscopic parameters of the contact model.With the model,the influence of fouling particles on the mechanical behavior and deformation of the ballast bed was analyzed from macro and micro perspectives.The results show that the increase in the strength of the fouling particles enlarges the stiffness of the ballast bed.Hard particles increase the uniformity coefficient of the contact force bondγof ballast by 50.4%.Fouling particles increase the average stress in the subgrade,soft particles by 2 kPa and hard particles by 1 kPa.Hard particles can reduce the elasticity,plastic deformation and energy dissipation in the track structure.As the fouling particle changes from hard to soft,the proportion of the settlement in ballast bed increases to 40.5%and surface layer of swbgrade settlement decreases to 59.5%.Thus,the influence of fouling particles should be considered carefully in railway design and maintenance. 展开更多
关键词 ballasted track fouling material discrete element method contact force bond elastic-plastic deformation
下载PDF
Effects of confining pressure on deformation failure behavior of jointed rock 被引量:5
4
作者 CHEN Miao ZANG Chuan-wei +4 位作者 DING Zi-wei ZHOU Guang-lei JIANG Bang-you ZHANG Guang-chao ZHANG Cheng-peng 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1305-1319,共15页
For a deeper understanding of the deformation failure behavior of jointed rock, numerical compression simulations are carried out on a rock specimen containing non-persistent joints under confining pressure with the b... For a deeper understanding of the deformation failure behavior of jointed rock, numerical compression simulations are carried out on a rock specimen containing non-persistent joints under confining pressure with the bondedparticle model. The microscopic parameters which can reflect the macroscopic mechanical properties and failure behavior of artificial jointed specimens are firstly calibrated. Then, the influence of joint inclination and confining pressure on stress-strain curves, crack patterns, and contact force distributions of jointed rock are investigated. The simulation results show that both the compressive strength and elastic modulus of the specimens increase with increasing confining pressure, and these two mechanical parameters decrease first and then increase with the increase of joints inclination. The sensitivity of strength and elastic modulus to confining pressure is not the same in different joints inclinations, which has the least impact on specimens with α=90°. Under low confining pressure, the failure modes are controlled by the joint inclination. As the confining pressure increased, the initiation and propagation of tensile crack are gradually inhibited, and the failure mode is transferred from tensile failure to shear-compression failure. Finally, the reinforcement effect of prestressed bolt support on engineering fractured rock mass is discussed. 展开更多
关键词 stability of surrounding rock non-persistent joints confining pressure cracking process discrete element method(DEM)
下载PDF
Discrete element simulation of mechanical characteristic of conditioned sands in earth pressure balance shield tunneling 被引量:10
5
作者 武力 屈福政 《Journal of Central South University》 SCIE EI CAS 2009年第6期1028-1033,共6页
The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sand... The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sands were reproduced and the slump test and the direct shear test of the conditioned sands were implemented. A DEM equivalent model that can simulate the macro mechanical characteristic of the conditioned sands was proposed,and the corresponding numerical models of the slump test and the shear test were established. By selecting proper DEM model parameters,the errors of the slump values between the simulation results and the test results are in the range of 10.3%-14.3%,and the error of the curves between the shear displacement and the shear stress calculated with the DEM simulation is 4.68%-16.5% compared with that of the laboratory direct shear test. This illustrates that the proposed DEM equivalent model can approximately simulate the mechanical characteristics of the conditioned sands,which provides the basis for further simulation of the interaction between the conditioned soil and the chamber pressure system of the EPB machine. 展开更多
关键词 conditioned sands slump test direct shear test discrete element simulation earth pressure balance shield machine
下载PDF
Application of the DEM to screening process:a 3D simulation 被引量:17
6
作者 CHEN Yan-hua TONG Xin 《Mining Science and Technology》 EI CAS 2009年第4期493-497,共5页
The discrete element method(DEM) has been widely used to simulate microscopic interactions between particles.Screening is a deeply complicated process when considering the law of motion for the particles,themselves.In... The discrete element method(DEM) has been widely used to simulate microscopic interactions between particles.Screening is a deeply complicated process when considering the law of motion for the particles,themselves.In this paper,a numerical model for the study of a particle screening process using the DEM is presented.Special attention was paid to the modeling of a vibrating screen that allows particles to pass through,or to rebound,when approaching the screen surface.Inferences concerning screen length and vibrating frequency as they relate to screening efficiency were studied.The conclusions were:three-dimensional simulation of screening efficiency along the screen length follows an exponential distribution;when the sieve vibrates over a certain frequency range the screening efficiency is stable;and,higher vibration frequencies can improve the handling capacity of the screening machine. 展开更多
关键词 discrete element method screening efficiency digital simulation
下载PDF
A Generalized Limit Equilibrium Method for the Solution of Active Earth Pressure on a Retaining Wall 被引量:11
7
作者 OUYANG Chao-jun XU Qiang +2 位作者 HE Si-ming LUO Yu WU Yong 《Journal of Mountain Science》 SCIE CSCD 2013年第6期1018-1027,共10页
In this paper, a generalized limit equilibrium method of solving the active earth pressure problem behind a retaining wall is proposed.Differing from other limit equilibrium methods, an arbitrary slip surface shape wi... In this paper, a generalized limit equilibrium method of solving the active earth pressure problem behind a retaining wall is proposed.Differing from other limit equilibrium methods, an arbitrary slip surface shape without any assumptions of pre-defined shapes is needed in the current framework, which is verified to find the most probable failure slip surface. Based on the current computational framework, numerical comparisons with experiment, discrete element method and other methods are carried out. In addition, the influences of the inclination of the wall, the soil cohesion, the angle of the internal friction of the soil, the slope inclination of the backfill soil on the critical pressure coefficient of the soil, the point of application of the resultant earth pressure and the shape of the slip surface are also carefully investigated. The results demonstrate that limit equilibrium solution from predefined slip plane assumption, including Coulomb solution, is a special case of current computational framework. It is well illustrated that the current method is feasible to evaluate the characteristics of earth pressure problem. 展开更多
关键词 Limit equilibrium method Retainingwall Active earth pressure Critical slip surface
下载PDF
Effect of moving baffle on average velocity and mixing of binary particles in rotating drums 被引量:2
8
作者 ZHANG Li-dong MA Jie +3 位作者 WANG Zhi-chao QIN Hong BAI Jing-ru WANG Qing 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第2期478-489,共12页
Adding a moving baffle to the drum is a new way to enhance the motion and mixing of particles in rotating drums.To obtain its influence on binary particles,horizontal rotating drums provided with a moving baffle were ... Adding a moving baffle to the drum is a new way to enhance the motion and mixing of particles in rotating drums.To obtain its influence on binary particles,horizontal rotating drums provided with a moving baffle were investigated by discrete element method(DEM).AtΩ=15 r/min,increasing the length of moving baffle can increase the fluctuation amplitude of average particle velocity.AtΩ=60 r/min,the influence of the moving baffle on the average velocity fluctuation tends to be more random.At both rotational speeds,the moving baffle causes the average particle velocity to fluctuate more sharply.The moving baffle can enhance particle mixing.AtΩ=15 r/min,the moving baffle with length ofδ=1/3 can best enhance particle mixing.However,atΩ=60 r/min,only the moving baffle with a specific length(δ=1/4)can enhance mixing.This basic research has a positive reference value for the application of the moving baffle in industry. 展开更多
关键词 discrete element method(DEM) rotating drum moving baffle binary particles
下载PDF
CFD-DEM simulation of fluid-solid flow of a tapered column separation bed 被引量:4
9
作者 Duan Chenlong Sheng Cheng +2 位作者 Wu Lingling Zhao Yuemin He Jinfeng 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第5期855-859,共5页
Research on recycling waste Printed Circuit Boards(PCB) is at the forefront of preventing environmental pollution and finding ways to recycle resources.The Tapered Column Separation Bed(TCSB) is invented aiming at dis... Research on recycling waste Printed Circuit Boards(PCB) is at the forefront of preventing environmental pollution and finding ways to recycle resources.The Tapered Column Separation Bed(TCSB) is invented aiming at disposing the problem that fine particles of waste printed circuit boards cannot be separated efficiently so as to obtain further insight about the underlying mechanisms and demonstrate the separation feasibility in the tapered column separation bed.In this work,a Computational Fluid Dynamics(CFD) coupled with Discrete Element Method(DEM) model for two-phase flow has been extended to simulate the fluid-solid flow in the tapered column separation bed.Its validity is demonstrated by its successful capturing the key features of particles' flow pattern,velocity,the pressure distribution,the axial position with time and axial force for particles with different densities.Simulation results show that the plastic particles and resin particles become overflow,while copper particles,iron particles and aluminum particles successively become underflow,with a discharge water flow rate of 1 m^3/h,an obliquity of 30°.The simulated results agree reasonably well with the experimental observation.Using this equipment to separate waste PCBs is feasible,theoretically. 展开更多
关键词 Tapered column separation bed Waste printed circuit boards Computational fluid dynamics Discrete element method Fluid-solid flow
下载PDF
Numerical analysis of behavior of active layer in rotary kilns by discrete element method 被引量:3
10
作者 谢知音 冯俊小 《Journal of Central South University》 SCIE EI CAS 2013年第3期634-639,共6页
The behavior of the active layer of material bed within rotary kilns plays a key role in industrial applications.To obtain its influences on industrial process,different regimes of particle motion have been simulated ... The behavior of the active layer of material bed within rotary kilns plays a key role in industrial applications.To obtain its influences on industrial process,different regimes of particle motion have been simulated by discrete element method(DEM) in three dimensions under variant rotation speeds,filling degree,based on the background of induration process of iron ore pellets.The influences of the mentioned factors on the maximum thickness of the active layer and the average velocity of particles have been investigated.The average velocity of particles increases with Froude number following the power function over a wide range,and the maximum thickness rises with increasing rotation speed in a way of logarithm.The influence of the filling degree f on the maximum thickness exhibits a good linearity under two classic regimes,but the increasing of the average velocity of the active layer is limited at f=0.4.This basic research highlights the impact of the active layer within rotary kilns,and lays a good foundation for the further investigation in mixing and heat transfer within the particle bed inside rotary kilns. 展开更多
关键词 rotary kiln particle motion discrete element method active layer
下载PDF
Simultaneous effects of joint spacing and joint orientation on the penetration rate of a single disc cutter 被引量:13
11
作者 Bejari Hadi Kakaie Reza +1 位作者 Ataei Mohammad Khademi-Hamidi Javad 《Mining Science and Technology》 EI CAS 2011年第4期507-512,共6页
This paper describes the influence of joint spacing and joint orientation on the penetration rate of a Tunnel Boring Machine (TBM) disc cutter as modeled by the Discrete Element Method (DEM). The input data for th... This paper describes the influence of joint spacing and joint orientation on the penetration rate of a Tunnel Boring Machine (TBM) disc cutter as modeled by the Discrete Element Method (DEM). The input data for the siLmulations were obtained from the sandstone along the AIborz tunnel that is currently being excavated in Iran using a 5.2 m diameter open TBM. Three joint spacings, 150, 200, and 300 mm, were modeled together with seven values of joint orientation; 0°, 15°, 30°, 45°, 60°, 75°, and 90°. The results show that the penetration increases when joint orientation increases from 0° to 75°, but it decreases as the joint orientation increases further from 75° to 90°. This is true for each joint spacing. In addition, for a given joint orientation increasing the joint spacing causes the TBM penetration to decrease. The optimum joint orientation, from the viewpoint of TBM penetration, is about 60-75°. 展开更多
关键词 Joint orientation Joint spacing TBM DEM
下载PDF
Simulation of the screening process on a circularly vibrating screen using 3D-DEM 被引量:14
12
作者 Zhao Lala Zhao Yuemin +2 位作者 Liu Chusheng Li Jun Dong Hailin 《Mining Science and Technology》 EI CAS 2011年第5期677-680,共4页
A numerical study of the motion particulates follow along a circularly vibrating screen deck was done using the three dimensional Discrete Element Method (DEM). The motion of the particles was analyzed. The effects of... A numerical study of the motion particulates follow along a circularly vibrating screen deck was done using the three dimensional Discrete Element Method (DEM). The motion of the particles was analyzed. The effects of vibration amplitude, throwing index, and screen deck inclination angle on the screening process are discussed. The results show that the average velocity of the particles increases along the lon- gitudinal direction of the deck. The screening efficiency is highest when the vibration amplitude, throw- ing index, and screen deck inclination angle are 3-3.5 mm, 2.7 and 15°, respectively. This work is helpful for developing a deep understanding of particle motion and for optimizing screen separator designs. 展开更多
关键词 Particulate materialsDiscrete Element MethodCircular vibrating screeningNumerical simulation
下载PDF
AN ESTIMATION OF FUZZY RELIABILITY OF DISTINCT ELEMENT METHOD IN PREDICTION OF SURFACE SUBSIDENCE DUE TO COAL MINING 被引量:1
13
作者 张玉卓 《Journal of Coal Science & Engineering(China)》 1998年第2期7-12,共6页
The quantitative evaluation of errors involved in a particular numerical modelling is of prime importance for the effectiveness and reliability of the method. Errors in Distinct Element Modelling are generated mainly ... The quantitative evaluation of errors involved in a particular numerical modelling is of prime importance for the effectiveness and reliability of the method. Errors in Distinct Element Modelling are generated mainly through three resources as simplification of physical model, determination of parameters and boundary conditions. A measure of errors which represent the degree of numerical solution 'close to true value' is proposed through fuzzy probability in this paper. The main objective of this paper is to estimate the reliability of Distinct Element Method in rock engineering practice by varying the parameters and boundary conditions. The accumulation laws of standard errors induced by improper determination of parameters and boundary conditions are discussed in delails. Furthermore, numerical experiments are given to illustrate the estimation of fuzzy reliability. Example shows that fuzzy reliability falls between 75%-98% when the relative standard errors of input data is under 10 %. 展开更多
关键词 RELIABILITY fuzzy sets ERRORS Distinct Element Method BALL
下载PDF
Discrete element method for adhesion properties evaluation of deep-sea sediment from macro and micro perspectives 被引量:1
14
作者 LI Jia-ping RAO Qiu-hua +1 位作者 HUANG Tian-bao MA Wen-bo 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第5期1701-1716,共16页
The adhesion between the mining machine and the deep-sea sediments will significantly affect the driving performance of the mining machine in the deep-sea environment.When the mining machine and the deep-sea sediment ... The adhesion between the mining machine and the deep-sea sediments will significantly affect the driving performance of the mining machine in the deep-sea environment.When the mining machine and the deep-sea sediment interaction simulation was carried out,the accuracy of the particle interaction parameters will directly affect the simulation results.This study proposed a method to systematically calibrate the interaction parameters between deep-sea sediment and grouser through the combination of experiment and simulation.The uniaxial compression test and macro adhesion test and corresponding discrete element numerical simulation were carried out,modifying the contact parameters until the simulation results are close to the experimental results.Then the micro-parameters of the JKR adhesion contact model were back calibrated with the test results,and the contact parameters between soil particle-soil particle and soil particle-metal are calibrated.Besides,the adhesion test shows that the adhesion forces were ranked in the order of 5052<STi80<TA2<TC4 under the same surface roughness,which indicates the aluminum alloy 5052 has the best anti-adhesion performance.The relationship between surface adhesion force and microscopic contact parameters was studied by discrete element numerical simulation,and the result shows that the coefficient of static friction and the coefficient of rolling friction has little effect on adhesion force.While it is mainly affected by the coefficient of restitution and surface energy,the surface adhesion force tends to decrease with the increase of the coefficient of restitution and increase with the growth of surface energy.The obtained parameters of soil particle to soil particle and soil particle to metal affecting the adhesion can contribute to the design optimization for the grouser of mining machines to decrease surface adhesion and enhance its movability and mining efficiency. 展开更多
关键词 discrete element modelling deep-sea sediment JKR adhesion contact model contact parameters surface adhesion force
下载PDF
Particle stratification and penetration of a linear vibrating screen by the discrete element method 被引量:7
15
作者 Xiao Jianzhang Tong Xin 《International Journal of Mining Science and Technology》 SCIE EI 2012年第3期357-362,共6页
A simulation of stratification and penetration was performed over a range of structural parameters that included screen width, aperture size, inclination angle, and wire diameter. The discrete element method (DEM) w... A simulation of stratification and penetration was performed over a range of structural parameters that included screen width, aperture size, inclination angle, and wire diameter. The discrete element method (DEM) was used for the simulations. The terms stratification and penetration are defined and the change in fine panicle concentration is discussed. Mathematical models relating fine particle ratio to time are established using the least squares method. The effect of structural parameters on fine panicle ratio is analyzed. Stratification and penetration rate are discussed by considering the time derivative of the fine panicle ratio. The conclusions are: an increase in inclination or wire diameter has a positive effect on par- ticle stratifying; The optimal screen width is 40 mm for panicle stratification; The inclination angle has a negative effect on the penetration; The effect of wire diameter and screen width on the penetration rate is negligible. 展开更多
关键词 Fine particle ratioStratificationPenetrationStructural parameter
下载PDF
Numerical simulation study on the relationship between mining heights and shield resistance in longwall panel 被引量:4
16
作者 Liu Chuang Li Huamin Jiang Dongjie 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第2期293-297,共5页
A numerical model based on a Continuum-based Distinct Element Method(CDEM) was used to carry out a dynamic simulation of the interaction between shield and rock strata movement in longwall mining. In Northern China, t... A numerical model based on a Continuum-based Distinct Element Method(CDEM) was used to carry out a dynamic simulation of the interaction between shield and rock strata movement in longwall mining. In Northern China, the Ordos coal field geological conditions and operational characteristics were used as a case example. The CDEM was constructed on Ordos coal field shield's operation characteristics and geological conditions. Numerical modelling was carried out to investigate the effects of different mining heights on the caving process, movement characteristics, equilibrium and stability conditions of overburden as the interaction between shield and surrounding rocks. With the numerical model, the internal factors for changes in shield resistance under different mining heights was found. The quantitative relationship between mining heights and shield resistance was also obtained by the numerical simulation. 展开更多
关键词 Numerical simulation Shield resistance Interaction between shield and surrounding rock Mining heights
下载PDF
Rock Cutting Analysis Employing Finite and Discrete Element Methods
17
作者 Carla Massignani Carrapatoso Carlos Emmanuel Ribeiro Lautenschlager +1 位作者 Guilherme Lima Righetto Sergio Augusto Barreto da Fontoura and Nelson Inoue 《Journal of Mechanics Engineering and Automation》 2016年第2期100-108,共9页
The petroleum industry has shown great interest in the study of drilling optimization on pre-salt formations given the low rates of penetration observed so far. Rate of penetration is the key to economically drill the... The petroleum industry has shown great interest in the study of drilling optimization on pre-salt formations given the low rates of penetration observed so far. Rate of penetration is the key to economically drill the pre-salt carbonate rock. This work presents the results of numerical modeling through finite element method and discrete element method for single cutter drilling in carbonate samples. The work is relevant to understand the mechanics of drill bit-rock interaction while drilling deep wells and the results were validated with experimental data raised under simulated downhole conditions. The numerical models were carried out under different geometrical configurations, varying the cutter chamfer size and back-rake angles. The forces generated on the cutter are translated into mechanical specific energy as this parameter is often used to measure drilling efficiency. Results indicate that the chamfer size does not change significantly the mechanical specific energy values, characteristic. Results also show there is a significant increase although the cutter aggressiveness is influenced by this geometrical in drilling resistance for larger values of back-rake angle. 展开更多
关键词 Rock cutting discrete element method finite element method single cutter test.
下载PDF
Applying XDEM to Analyze the Heat-up Process of Woody Biomass on a Backward Acting Grate
18
作者 Mohammad Mohseni Bernhard Peters Algis Dziugys 《Journal of Energy and Power Engineering》 2017年第8期517-527,共11页
The objective of this study is analysis of heat-up process of wet woody particles on a backward acting grate including dynamics motion investigation by implementing XDEM (extended discrete element method) as a novel... The objective of this study is analysis of heat-up process of wet woody particles on a backward acting grate including dynamics motion investigation by implementing XDEM (extended discrete element method) as a novel approach. In this method, the particles are resolved as the discrete phase (individual elements) coupled via heat, mass and momentum transfer to the continuous gas phase. The temperature of particulates along the backward acting grate is investigated by evaluating effects of operating parameters such as bar amplitude and period. Furthermore, the bar motion has effects largely on the heat-up process of the packed bed on the backward acting grate which is considered here as well. In other words, motion of particles caused by bar motion influences the heat transfer of particles and totally the packed bed. In fact, the particles' heat-up is performed by a radiative heat flux facing the packed bed surface so that heat transfer of particles as radiation and conduction with surrounding particles is taken into account in addition to convection heat transfer between particles and surrounding gas phase. 展开更多
关键词 XDEM backward acting grate BIOMASS modelling heat-up.
下载PDF
Surface settlement caused by twin-parallel shield tunnelling in sandy cobble strata 被引量:26
19
作者 Chuan HE Kun FENG +1 位作者 Yong FANG Ying-chao JIANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2012年第11期858-869,共12页
City metro tunnels are usually constructed as twin-parallel tunnels and their adjacent construction may lead to surface deformation,affecting the surface environment and the safety of the tunnels.Due to its strong dis... City metro tunnels are usually constructed as twin-parallel tunnels and their adjacent construction may lead to surface deformation,affecting the surface environment and the safety of the tunnels.Due to its strong dispersion,sandy cobble strata can be easily disturbed by shield tunneling.Based on the project of the Chengdu Metro Line 1,field and model tests were carried out to study the surface settlement caused by shield tunneling in sandy cobble strata by measuring surface settlement curves,ground loss ratios and construction influence zones.The discrete element method(DEM) was used to study the factors affecting the formation of ground arches in sandy cobble strata at the microscopic level.Results show that the shape of the surface settlement curve in sandy cobble strata is different from that in soft soil.The buried depth and clear spacing of the two tunnels had a significant impact on the formation of ground arches. 展开更多
关键词 Twin-parallel shield tunneling Surface settlement Ground loss Field test Discrete element method(DEM) Model test
原文传递
A combined continuous-discontinuous approach for failure process of quasi-brittle materials 被引量:3
20
作者 CHANG XiaoLin HU Chao +2 位作者 ZHOU Wei MA Gang ZHANG Chao 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第3期550-559,共10页
Rock,concrete and other geo-materials,due to the presence of microstructural inhomogeneity,their fracture processes and damage characteristics are associated with the distribution of micro-cracks contained in the mate... Rock,concrete and other geo-materials,due to the presence of microstructural inhomogeneity,their fracture processes and damage characteristics are associated with the distribution of micro-cracks contained in the materials.In this study,by introducing a cohesive zone model based on fracture mechanics into the framework of deformable discrete element method,a continuous-discontinuous coupling analysis approach for simulating the fracture of quasi-brittle materials is proposed.The cohesive interface elements are inserted into certain engineering or research region.It is assumed that damage and fracture occur only in the interface elements,while bulk material is modeled to be elastic.The Mohr-Coulomb criterion with tension cut-off is adopted as the damage initiation criterion,and a scalar damage variable representing damage in the material is used to describe the rate at which the material stiffness is degraded.Cracks are simulated explicitly by the failure of the interface elements.Numerical simulations are performed in order to validate the suggested method.Partial applications are also listed.The results show that this method provides a simple but effective tool for the simulation of crack initiation and propagation,and it can reflect the whole process of quasi-brittle materials from small deformation to large deformation and failure. 展开更多
关键词 quasi-brittle materials deformable discrete elements cohesive zone model crack propagation
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部