期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
非自伴椭圆问题的离散强极值原理与区域分解法 被引量:3
1
作者 胡健伟 《计算数学》 CSCD 北大核心 1999年第3期283-292,共10页
The solution of the boundary-vaue problem for non-self-adjoint elliptic equa tions is approximated by Partial Upwind Finite Element method, where all the angles of the triangles a are /2 but the mesh parameter h are a... The solution of the boundary-vaue problem for non-self-adjoint elliptic equa tions is approximated by Partial Upwind Finite Element method, where all the angles of the triangles a are /2 but the mesh parameter h are arbitrary and which insures the validity of the strongly maximum principle for the discrete prob-lem. The Schwarz alternating method will enable us to break the discrete linear system into several linear subsystems of smaller size and we shall show that the approximate solutions from Schwarz domain decomposition method converge to the exact solution of the linear system geometrically and uniformly. 展开更多
关键词 离散强极值原理 区域分解法 椭圆型方程
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部