An effective discrete artificial bee colony(DABC) algorithm is proposed for the flow shop scheduling problem with intermediate buffers(IBFSP) in order to minimize the maximum completion time(i.e makespan). The effecti...An effective discrete artificial bee colony(DABC) algorithm is proposed for the flow shop scheduling problem with intermediate buffers(IBFSP) in order to minimize the maximum completion time(i.e makespan). The effective combination of the insertion and swap operator is applied to producing neighborhood individual at the employed bee phase. The tournament selection is adopted to avoid falling into local optima, while, the optimized insert operator embeds in onlooker bee phase for further searching the neighborhood solution to enhance the local search ability of algorithm. The tournament selection with size 2 is again applied and a better selected solution will be performed destruction and construction of iterated greedy(IG) algorithm, and then the result replaces the worse one. Simulation results show that our algorithm has a better performance compared with the HDDE and CHS which were proposed recently. It provides the better known solutions for the makespan criterion to flow shop scheduling problem with limited buffers for the Car benchmark by Carlier and Rec benchmark by Reeves. The convergence curves show that the algorithm not only has faster convergence speed but also has better convergence value.展开更多
In modem protection relays, the accurate and fast fault location is an essential task for transmission line protection from the point of service restoration and reliability. The applications of neural networks based f...In modem protection relays, the accurate and fast fault location is an essential task for transmission line protection from the point of service restoration and reliability. The applications of neural networks based fault location techniques to transmission line are available in many papers. However, almost all the studies have so far employed the FNN (feed-forward neural network) trained with back-propagation algorithm (BPNN) which has a better structure and been widely used. But there are still many drawbacks if we simply use feed-forward neural network, such as slow training rate, easy to trap into local minimum point, and bad ability on global search. In this paper, feed-forward neural network trained by PSO (particle swarm optimization) algorithm is proposed for fault location scheme in 500 kV transmission system with distributed parameters presentation, The purpose is to simulate distance protection relay. The algorithm acts as classifier which requires phasor measurements data from one end of the transmission line and DFT (discrete Fourier transform). Extensive simulation studies carried out using MATLAB show that the proposed scheme has the ability to give a good estimation of fault location under various fault conditions.展开更多
基金Projects(61174040,61104178,61374136) supported by the National Natural Science Foundation of ChinaProject(12JC1403400) supported by Shanghai Commission of Science and Technology,ChinaProject supported by the Fundamental Research Funds for the Central Universities,China
文摘An effective discrete artificial bee colony(DABC) algorithm is proposed for the flow shop scheduling problem with intermediate buffers(IBFSP) in order to minimize the maximum completion time(i.e makespan). The effective combination of the insertion and swap operator is applied to producing neighborhood individual at the employed bee phase. The tournament selection is adopted to avoid falling into local optima, while, the optimized insert operator embeds in onlooker bee phase for further searching the neighborhood solution to enhance the local search ability of algorithm. The tournament selection with size 2 is again applied and a better selected solution will be performed destruction and construction of iterated greedy(IG) algorithm, and then the result replaces the worse one. Simulation results show that our algorithm has a better performance compared with the HDDE and CHS which were proposed recently. It provides the better known solutions for the makespan criterion to flow shop scheduling problem with limited buffers for the Car benchmark by Carlier and Rec benchmark by Reeves. The convergence curves show that the algorithm not only has faster convergence speed but also has better convergence value.
文摘In modem protection relays, the accurate and fast fault location is an essential task for transmission line protection from the point of service restoration and reliability. The applications of neural networks based fault location techniques to transmission line are available in many papers. However, almost all the studies have so far employed the FNN (feed-forward neural network) trained with back-propagation algorithm (BPNN) which has a better structure and been widely used. But there are still many drawbacks if we simply use feed-forward neural network, such as slow training rate, easy to trap into local minimum point, and bad ability on global search. In this paper, feed-forward neural network trained by PSO (particle swarm optimization) algorithm is proposed for fault location scheme in 500 kV transmission system with distributed parameters presentation, The purpose is to simulate distance protection relay. The algorithm acts as classifier which requires phasor measurements data from one end of the transmission line and DFT (discrete Fourier transform). Extensive simulation studies carried out using MATLAB show that the proposed scheme has the ability to give a good estimation of fault location under various fault conditions.