A novel hierarchical architecture—N-doped hollow carbon fibers decorated with N-doped carbon clusters(NHCF@NCC)—was synthesized for high-performance anode material of potassium ion batteries(PIBs).The material is fo...A novel hierarchical architecture—N-doped hollow carbon fibers decorated with N-doped carbon clusters(NHCF@NCC)—was synthesized for high-performance anode material of potassium ion batteries(PIBs).The material is formulated with porous N-doped hollow carbon fibers as the backbone,which effectively shortens the diffusion length of potassium ion and increases the interface between the electrode and electrolyte.In addition,the N-doped carbon clusters attached on the hollow carbon fibers can provide abundant reactive sites.Specially,NHCF@NCC could form a freestanding electrode with a three dimensional interconnected conductive network owing to the ultrahigh aspect ratio.In this way,NHCF@NCC delivers an excellent electrochemical performance as free-standing anode materials of PIBs,exhibiting a high reversible capacity of 310 mA h g^−1 at a current density of 100 mA g^−1,a long cycling stability of 1000 cycles with negligible degradation,and a superior rate performance of 153 mA h g^−1 at a large current density of 2000 mA g^−1.展开更多
基金financially supported by the National Natural Science Foundation of China (51672078)Hunan Natural Science Foundation (2019JJ40031)+1 种基金Hunan Provincial Innovation Foundation for Postgraduate (CX20190321)China Scholarship Council (201906130035)
文摘A novel hierarchical architecture—N-doped hollow carbon fibers decorated with N-doped carbon clusters(NHCF@NCC)—was synthesized for high-performance anode material of potassium ion batteries(PIBs).The material is formulated with porous N-doped hollow carbon fibers as the backbone,which effectively shortens the diffusion length of potassium ion and increases the interface between the electrode and electrolyte.In addition,the N-doped carbon clusters attached on the hollow carbon fibers can provide abundant reactive sites.Specially,NHCF@NCC could form a freestanding electrode with a three dimensional interconnected conductive network owing to the ultrahigh aspect ratio.In this way,NHCF@NCC delivers an excellent electrochemical performance as free-standing anode materials of PIBs,exhibiting a high reversible capacity of 310 mA h g^−1 at a current density of 100 mA g^−1,a long cycling stability of 1000 cycles with negligible degradation,and a superior rate performance of 153 mA h g^−1 at a large current density of 2000 mA g^−1.