期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种离散时间调度的图像自分类脉冲神经网络 被引量:2
1
作者 刘宙思 李尊朝 +1 位作者 张剑 罗丹 《西安交通大学学报》 EI CAS CSCD 北大核心 2021年第3期57-64,共8页
针对现有脉冲神经网络(SNN)图像分类模型中存在的资源占用高和运算较复杂等实际约束问题,为寻求更加轻量高效的机器视觉解决方案,提出了一种新型的基于离散时间调度的SNN图像自分类模型。通过高斯差分归一化和首脉冲时间编码完成了从灰... 针对现有脉冲神经网络(SNN)图像分类模型中存在的资源占用高和运算较复杂等实际约束问题,为寻求更加轻量高效的机器视觉解决方案,提出了一种新型的基于离散时间调度的SNN图像自分类模型。通过高斯差分归一化和首脉冲时间编码完成了从灰度图像到脉冲序列的转换;结合经典的脉冲时间依赖可塑性算法与强化学习的奖惩机制,实现了网络自分类;通过引入竞争性机制和双重约束条件,保证了脉冲传递的稀疏性和学习特征的特异性,有效抑制了过拟合的出现。在Face/Moto数据集上的实验结果表明:相较于传统SNN分类模型,权重更新算法复杂度由O(n^(2))降低为O(1),脉冲编码模式简化了近90%,网络训练参数减少了60%以上;模型开始迭代6次后权重近乎收敛,分类准确率由40%迅速上升至90%,在迭代20次后分类性能趋于稳定,最终准确率达到了93.4%;当训练样本比例减少至原先的40%后,模型的分类准确率仍能稳定保持在80%左右。所提模型可为高效率低功耗的小型智能化硬件终端的边缘计算方案实现提供参考。 展开更多
关键词 脉冲神经网络 机器视觉 脉冲时间依赖可塑性 强化学习 离散时间调度 边缘计算
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部