In this letter, discrete complex image method is employed to compute the Green's functions in the spatial domain, which improves the speed of evaluating the impedance matrix.The triangle vector basis function--RWG...In this letter, discrete complex image method is employed to compute the Green's functions in the spatial domain, which improves the speed of evaluating the impedance matrix.The triangle vector basis function--RWG, is used to simulate the current distribution in order to compute the scattering properties of arbitrary shape microstrip patch without the staircase approximation. The numerical result shows the validity of the proposed method.展开更多
For a sparse non-singular matrix A, generally A- 1 is a dense matrix. However, for a class of matrices, A-1 can be a matrix with off-diagonal decay properties, i.e., |Aij^-1| decays fast to 0 with respect to the inc...For a sparse non-singular matrix A, generally A- 1 is a dense matrix. However, for a class of matrices, A-1 can be a matrix with off-diagonal decay properties, i.e., |Aij^-1| decays fast to 0 with respect to the increase of a properly defined distance between i and j. Here we consider the off-diagonal decay properties of discretized Green's functions for SchrSdinger type operators. We provide decay estimates for discretized Green's functions obtained from the finite difference discretization, and from a variant of the pseudo-spectral discretization. The asymptotic decay rate in our estimate is independent of the domain size and of the discretization parameter. We verify the decay estimate with numerical results for one-dimensional Schr6dinger type operators.展开更多
文摘In this letter, discrete complex image method is employed to compute the Green's functions in the spatial domain, which improves the speed of evaluating the impedance matrix.The triangle vector basis function--RWG, is used to simulate the current distribution in order to compute the scattering properties of arbitrary shape microstrip patch without the staircase approximation. The numerical result shows the validity of the proposed method.
基金supported by Laboratory Directed Research and Development Funding from Berkeley Labprovided by the Director,Office of Science,of the US Department of Energy(Grant No.DE-AC02-05CH11231)+3 种基金the Alfred P Sloan Foundationthe DOE Scientific Discovery through the Advanced Computing Programthe DOE Center for Applied Mathematics for Energy Research Applications Programthe National Science Foundation of USA(Grant Nos.DMS-1312659 and DMS-1454939)
文摘For a sparse non-singular matrix A, generally A- 1 is a dense matrix. However, for a class of matrices, A-1 can be a matrix with off-diagonal decay properties, i.e., |Aij^-1| decays fast to 0 with respect to the increase of a properly defined distance between i and j. Here we consider the off-diagonal decay properties of discretized Green's functions for SchrSdinger type operators. We provide decay estimates for discretized Green's functions obtained from the finite difference discretization, and from a variant of the pseudo-spectral discretization. The asymptotic decay rate in our estimate is independent of the domain size and of the discretization parameter. We verify the decay estimate with numerical results for one-dimensional Schr6dinger type operators.