The discrete choice model is used to estimate the walking access area of rail transit stations while considering the influence of existing competition from other traffic modes. The acceptable walking access area is de...The discrete choice model is used to estimate the walking access area of rail transit stations while considering the influence of existing competition from other traffic modes. The acceptable walking access area is determined according to the willingness of passengers to walk who prefer rail transit compared with bus and automobile. Empirical studies were conducted using the survey data of six stations from the rail transit in Nanjing, China. The results indicate that the rail transit is more preferable compared with bus and private automobile in this case when excluding the influence of individual and environmental factors. It is found that passengers tend to underestimate their willingness to walk. The acceptable walking access area of every rail transit station is different from each other. Suburban stations generally have a larger walking access area than downtown stations. In addition, a better walking environment and a scarcer surrounding traffic environment can also lead to a larger walking area. The model was confirmed to be effective and reasonable according to the model validation. This study can be of benefit to the passenger transportation demand estimation in the location planning and evaluation of rail transit stations.展开更多
The function projective synchronization of discrete-time chaotic systems is presented. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate funct...The function projective synchronization of discrete-time chaotic systems is presented. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate function projective synchronization (FPS) of discrete-time chaotic systems with uncertain parameters. With the aid of symbolic-numeric computation, we use the proposed scheme to illustrate FPS between two identical 3D Henon-like maps with uncertain parameters. Numeric simulations are used to verify the effectiveness of our scheme.展开更多
Discrete chaotic systems are used for bi-directlonal secure communication. Both sides of communication keep sending signals to achieve their synchronization, and then recover the messages. However, the third side with...Discrete chaotic systems are used for bi-directlonal secure communication. Both sides of communication keep sending signals to achieve their synchronization, and then recover the messages. However, the third side without keys cannot get useful information. Known-plaintext attack is also engaged to analyze this method, and the simulation results show that the proposed method can reach high security performance.展开更多
Objective: To investigate the clinical value of QT dispersion (QTd) and the effects of 6-minute walk test (6-MWT) mimicking the patients' daily activities on QTd in patients with congestive heart failure (CHF).Met...Objective: To investigate the clinical value of QT dispersion (QTd) and the effects of 6-minute walk test (6-MWT) mimicking the patients' daily activities on QTd in patients with congestive heart failure (CHF).Methods: Twenty-eight CHF patients and 22 normal subjects participated these study, who all completed 6-MWT without developing severe arrhythmias.Before and after 6-MWT, standardized 12-lead surface ECGs were obtained to measure QTd and corrected QTd (QTcd).Results: Both before and after 6-MWT, the QTd and QTcd in CHF patients were longer than those in the controls (P<0.001), and QTd and QTcd after 6-MWT were significantly shorter than those before 6-MWT in CHF patients (P=0.007, and 0.018).There was no significant difference in the measurement in the control group.Conclusion: QTd and QTcd are longer in CHF patients than in normal subjects.Moderate exercise may improve the inhomogeneity of ventricular repolarization dispersion in CHF patients.展开更多
In this paper, the modified cascade synchronization scheme is proposed to investigate the synchronization in discrete-time hyperchaotic systems. By choosing a general kind of proportional scaling error functions and b...In this paper, the modified cascade synchronization scheme is proposed to investigate the synchronization in discrete-time hyperchaotic systems. By choosing a general kind of proportional scaling error functions and based on rigorous control theory, we take the discrete-time hyperchaotic system due to Wang and 3D generalized Henon map as two examples to achieve the modified cascade synchronization, respectively. Numerical simulations are used to verify the effectiveness of the proposed technique.展开更多
Synchronization and bifurcation analysis in coupled networks of discrete-time systems are investigated in the present paper. We mainly focus on some special coupling matrix, i.e., the sum of each row equals a nonzero ...Synchronization and bifurcation analysis in coupled networks of discrete-time systems are investigated in the present paper. We mainly focus on some special coupling matrix, i.e., the sum of each row equals a nonzero constant u and the network connection is directed. A result that the network can reach a new synchronous state, which is not the asymptotic limit set determined by the node state equation, is derived. It is interesting that the network exhibits bifurcation if we regard the constant u as a bifurcation parameter at the synchronous state. Numerical simulations are given to show the efficiency of our derived conclusions.展开更多
This paper establishes two theorems for two time-delayed (chaotic) discrete systems to achieve timedelayed generalized synchronization (TDGS). These two theorems uncover the genera/forms of two TDGS systems via a ...This paper establishes two theorems for two time-delayed (chaotic) discrete systems to achieve timedelayed generalized synchronization (TDGS). These two theorems uncover the genera/forms of two TDGS systems via a prescribed transformation. As examples, we convert the Lorenz three-dimensional chaotic map to an equal time-delayed system as the driving system, and construct the TDGS driven systems according to the Theorems 1 and 2. Numerical simulations demonstrate the effectiveness of the proposed theorems.展开更多
Suitable stabilization conditions obtained for continuous chaotic systems are generalized to discrete-time chaotic systems. The proposed approach, leading to these conditions for complete synchronization is based on t...Suitable stabilization conditions obtained for continuous chaotic systems are generalized to discrete-time chaotic systems. The proposed approach, leading to these conditions for complete synchronization is based on the use of state feedback and aggregation techniques for stability studies associated with the arrow form matrix for system description. The results are successfully applied for two identical discrete-time hyper chaotic Henon maps with different orders and also for non-identical discrete-time chaotic systems with same order namely the Lozi and the Ushio maps.展开更多
An ultra-accurate isogeometric dynamic analysis is presented.The key ingredient of the proposed methodology is the development of isogeometric higher order mass matrix.A new one-step method is proposed for the constru...An ultra-accurate isogeometric dynamic analysis is presented.The key ingredient of the proposed methodology is the development of isogeometric higher order mass matrix.A new one-step method is proposed for the construction of higher order mass matrix.In this approach,an adjustable mass matrix is formulated through introducing a set of mass parameters into the consistent mass matrix under the element mass conservation condition.Then the semi-discrete frequency derived from the free vibration equation with the adjustable mass matrix is served as a measure to optimize the mass parameters.In 1D analysis,it turns out that the present one-step method can perfectly recover the existing reduced bandwidth mass matrix and the higher order mass matrix by choosing different mass parameters.However,the employment of the proposed one-step method to the2D membrane problem yields a remarkable gain of solution accuracy compared with the higher order mass matrix generated by the original two-step method.Subsequently a full-discrete isogeometric transient analysis algorithm is presented by using the Newmark time integration scheme and the higher order mass matrix.The full-discrete frequency is derived to assess the accuracy of space-time discretization.Finally a set of numerical examples are presented to evaluate the accuracy of the proposed method,which show that very favorable solution accuracy is achieved by the present dynamic isogeometric analysis with higher order mass formulation compared with that obtained from the standard consistent mass approach.展开更多
This paper is concerned with the problem of synchronization anMysis for discrete-time coupled neural networks. The networks under consideration are subject to: (1) the jump- ing parameters that are modeled as a con...This paper is concerned with the problem of synchronization anMysis for discrete-time coupled neural networks. The networks under consideration are subject to: (1) the jump- ing parameters that are modeled as a continuous-time, discrete-state Markov process; (2) impulsive disturbances; and (3) time delays that include both the mode-dependent discrete and distributed delay. By constructing suitable Lyapuno-Krasovskii functional and combining with linear matrix inequality approach, several novel criteria are derived for verifying the global exponential synchronization in the mean square of such stochas- tic dynamical networks. The derived conditions are established in terms of linear matrix inequalities, which can be easily solved by some available software packages. A simu- lation example is presented to show the effectiveness and applicability of the obtained results,展开更多
基金The Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1838)the Fundamental Research Funds for the Central Universities(No.KYLX16_0270)the Foundation of China Scholarship Council(No.201606090240)
文摘The discrete choice model is used to estimate the walking access area of rail transit stations while considering the influence of existing competition from other traffic modes. The acceptable walking access area is determined according to the willingness of passengers to walk who prefer rail transit compared with bus and automobile. Empirical studies were conducted using the survey data of six stations from the rail transit in Nanjing, China. The results indicate that the rail transit is more preferable compared with bus and private automobile in this case when excluding the influence of individual and environmental factors. It is found that passengers tend to underestimate their willingness to walk. The acceptable walking access area of every rail transit station is different from each other. Suburban stations generally have a larger walking access area than downtown stations. In addition, a better walking environment and a scarcer surrounding traffic environment can also lead to a larger walking area. The model was confirmed to be effective and reasonable according to the model validation. This study can be of benefit to the passenger transportation demand estimation in the location planning and evaluation of rail transit stations.
基金supported by the National Natural Science Foundation of China under Grant Nos.10735030 and 90718041Shanghai Leading Academic Discipline Project under Grant No.B412+1 种基金Zhejiang Provincial Natural Science Foundations of China under Grant No.Y604056,Doctoral Foundation of Ningbo City under Grant No.2005A61030Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT0734
文摘The function projective synchronization of discrete-time chaotic systems is presented. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate function projective synchronization (FPS) of discrete-time chaotic systems with uncertain parameters. With the aid of symbolic-numeric computation, we use the proposed scheme to illustrate FPS between two identical 3D Henon-like maps with uncertain parameters. Numeric simulations are used to verify the effectiveness of our scheme.
文摘Discrete chaotic systems are used for bi-directlonal secure communication. Both sides of communication keep sending signals to achieve their synchronization, and then recover the messages. However, the third side without keys cannot get useful information. Known-plaintext attack is also engaged to analyze this method, and the simulation results show that the proposed method can reach high security performance.
文摘Objective: To investigate the clinical value of QT dispersion (QTd) and the effects of 6-minute walk test (6-MWT) mimicking the patients' daily activities on QTd in patients with congestive heart failure (CHF).Methods: Twenty-eight CHF patients and 22 normal subjects participated these study, who all completed 6-MWT without developing severe arrhythmias.Before and after 6-MWT, standardized 12-lead surface ECGs were obtained to measure QTd and corrected QTd (QTcd).Results: Both before and after 6-MWT, the QTd and QTcd in CHF patients were longer than those in the controls (P<0.001), and QTd and QTcd after 6-MWT were significantly shorter than those before 6-MWT in CHF patients (P=0.007, and 0.018).There was no significant difference in the measurement in the control group.Conclusion: QTd and QTcd are longer in CHF patients than in normal subjects.Moderate exercise may improve the inhomogeneity of ventricular repolarization dispersion in CHF patients.
基金National Natural Science Foundation of China under Grant No.10735030
文摘In this paper, the modified cascade synchronization scheme is proposed to investigate the synchronization in discrete-time hyperchaotic systems. By choosing a general kind of proportional scaling error functions and based on rigorous control theory, we take the discrete-time hyperchaotic system due to Wang and 3D generalized Henon map as two examples to achieve the modified cascade synchronization, respectively. Numerical simulations are used to verify the effectiveness of the proposed technique.
基金The project supported by the Key Programm Projects of the National Natural Science Foundation of China under Grant No. 70431002, the SRF for R0CS, SEM and the Graduate Student Innovation Foundation of Shanghai University
文摘Synchronization and bifurcation analysis in coupled networks of discrete-time systems are investigated in the present paper. We mainly focus on some special coupling matrix, i.e., the sum of each row equals a nonzero constant u and the network connection is directed. A result that the network can reach a new synchronous state, which is not the asymptotic limit set determined by the node state equation, is derived. It is interesting that the network exhibits bifurcation if we regard the constant u as a bifurcation parameter at the synchronous state. Numerical simulations are given to show the efficiency of our derived conclusions.
基金Supported by the National Natural Science Foundation of China under Grant No. 60674059
文摘This paper establishes two theorems for two time-delayed (chaotic) discrete systems to achieve timedelayed generalized synchronization (TDGS). These two theorems uncover the genera/forms of two TDGS systems via a prescribed transformation. As examples, we convert the Lorenz three-dimensional chaotic map to an equal time-delayed system as the driving system, and construct the TDGS driven systems according to the Theorems 1 and 2. Numerical simulations demonstrate the effectiveness of the proposed theorems.
文摘Suitable stabilization conditions obtained for continuous chaotic systems are generalized to discrete-time chaotic systems. The proposed approach, leading to these conditions for complete synchronization is based on the use of state feedback and aggregation techniques for stability studies associated with the arrow form matrix for system description. The results are successfully applied for two identical discrete-time hyper chaotic Henon maps with different orders and also for non-identical discrete-time chaotic systems with same order namely the Lozi and the Ushio maps.
基金supported by the National Natural Science Foundation of China(Grant No.11222221)
文摘An ultra-accurate isogeometric dynamic analysis is presented.The key ingredient of the proposed methodology is the development of isogeometric higher order mass matrix.A new one-step method is proposed for the construction of higher order mass matrix.In this approach,an adjustable mass matrix is formulated through introducing a set of mass parameters into the consistent mass matrix under the element mass conservation condition.Then the semi-discrete frequency derived from the free vibration equation with the adjustable mass matrix is served as a measure to optimize the mass parameters.In 1D analysis,it turns out that the present one-step method can perfectly recover the existing reduced bandwidth mass matrix and the higher order mass matrix by choosing different mass parameters.However,the employment of the proposed one-step method to the2D membrane problem yields a remarkable gain of solution accuracy compared with the higher order mass matrix generated by the original two-step method.Subsequently a full-discrete isogeometric transient analysis algorithm is presented by using the Newmark time integration scheme and the higher order mass matrix.The full-discrete frequency is derived to assess the accuracy of space-time discretization.Finally a set of numerical examples are presented to evaluate the accuracy of the proposed method,which show that very favorable solution accuracy is achieved by the present dynamic isogeometric analysis with higher order mass formulation compared with that obtained from the standard consistent mass approach.
文摘This paper is concerned with the problem of synchronization anMysis for discrete-time coupled neural networks. The networks under consideration are subject to: (1) the jump- ing parameters that are modeled as a continuous-time, discrete-state Markov process; (2) impulsive disturbances; and (3) time delays that include both the mode-dependent discrete and distributed delay. By constructing suitable Lyapuno-Krasovskii functional and combining with linear matrix inequality approach, several novel criteria are derived for verifying the global exponential synchronization in the mean square of such stochas- tic dynamical networks. The derived conditions are established in terms of linear matrix inequalities, which can be easily solved by some available software packages. A simu- lation example is presented to show the effectiveness and applicability of the obtained results,