For the generation of the model in reverse engineering, a laser scanner is currently used a lot due to the fast measuring speed and high precision. Direct triangulation of data points captured from a physical object h...For the generation of the model in reverse engineering, a laser scanner is currently used a lot due to the fast measuring speed and high precision. Direct triangulation of data points captured from a physical object has a great advantage in that it can reduce the time and error in modeling process. It is important to reduce the number of data points for triangulating points with maintaining precision. To triangulate data points within a tolerance ε a new approach is developed in this paper. Different level of triangulations can be generated directly from data points using the proposed strategy that reduces and triangulates data points based on triangulation of 3D parametric surfaces. An experimental example is presented to demonstrate the effectiveness and efficiency of the proposed algorithm.展开更多
文摘For the generation of the model in reverse engineering, a laser scanner is currently used a lot due to the fast measuring speed and high precision. Direct triangulation of data points captured from a physical object has a great advantage in that it can reduce the time and error in modeling process. It is important to reduce the number of data points for triangulating points with maintaining precision. To triangulate data points within a tolerance ε a new approach is developed in this paper. Different level of triangulations can be generated directly from data points using the proposed strategy that reduces and triangulates data points based on triangulation of 3D parametric surfaces. An experimental example is presented to demonstrate the effectiveness and efficiency of the proposed algorithm.