Discrete-event system simulation technology is used to analyze distribution system reliability in this paper. A simulation model, including entity state models, system state models, state transition models, reliabilit...Discrete-event system simulation technology is used to analyze distribution system reliability in this paper. A simulation model, including entity state models, system state models, state transition models, reliability criterion model, is established. ‘Next happen event’ is taken as impulse principle of simulator clock to determine the sequence of random event occurrence dynamically. The results show this method is feasible.展开更多
We perform langevin dynamics simulation for envelope solitons in an FPU-β lattice,with the nearestneighborinteraction and quartic anharmonicity.We get the motion equations of our discrete system by adding noiseand da...We perform langevin dynamics simulation for envelope solitons in an FPU-β lattice,with the nearestneighborinteraction and quartic anharmonicity.We get the motion equations of our discrete system by adding noiseand damping to the set of deterministic motion equations.We define'half-time'as the time when the amplitude of theenvelope soliton decreases by half due to damping.And then the mass,center and half-time of the perturbed envelopesoliton are numerically simulated,beginning with the discrete envelope soliton at rest.Results show successfully hownoise affects behavior of the envelope soliton.展开更多
Modeling genetic regulatory networks is an important research topic in genomic research and computationM systems biology. This paper considers the problem of constructing a genetic regula- tory network (GRN) using t...Modeling genetic regulatory networks is an important research topic in genomic research and computationM systems biology. This paper considers the problem of constructing a genetic regula- tory network (GRN) using the discrete dynamic system (DDS) model approach. Although considerable research has been devoted to building GRNs, many of the works did not consider the time-delay effect. Here, the authors propose a time-delay DDS model composed of linear difference equations to represent temporal interactions among significantly expressed genes. The authors also introduce interpolation scheme and re-sampling method for equalizing the non-uniformity of sampling time points. Statistical significance plays an active role in obtaining the optimal interaction matrix of GRNs. The constructed genetic network using linear multiple regression matches with the original data very well. Simulation results are given to demonstrate the effectiveness of the proposed method and model.展开更多
基金SupportedbyNationalNatureScienceFoundation No .5 0 1770 17
文摘Discrete-event system simulation technology is used to analyze distribution system reliability in this paper. A simulation model, including entity state models, system state models, state transition models, reliability criterion model, is established. ‘Next happen event’ is taken as impulse principle of simulator clock to determine the sequence of random event occurrence dynamically. The results show this method is feasible.
基金Supported by Scientific Research Fund of Hunan Provincial Education Department under Grant No.07B075Interactive Project Fund of Xiangtan University under Grant No.061ND09Initial Scientific Research Fund of Xiangtan University
文摘We perform langevin dynamics simulation for envelope solitons in an FPU-β lattice,with the nearestneighborinteraction and quartic anharmonicity.We get the motion equations of our discrete system by adding noiseand damping to the set of deterministic motion equations.We define'half-time'as the time when the amplitude of theenvelope soliton decreases by half due to damping.And then the mass,center and half-time of the perturbed envelopesoliton are numerically simulated,beginning with the discrete envelope soliton at rest.Results show successfully hownoise affects behavior of the envelope soliton.
基金supported in part by HKRGC GrantHKU Strategic Theme Grant on Computational SciencesNational Natural Science Foundation of China under Grant Nos.10971075 and 11271144
文摘Modeling genetic regulatory networks is an important research topic in genomic research and computationM systems biology. This paper considers the problem of constructing a genetic regula- tory network (GRN) using the discrete dynamic system (DDS) model approach. Although considerable research has been devoted to building GRNs, many of the works did not consider the time-delay effect. Here, the authors propose a time-delay DDS model composed of linear difference equations to represent temporal interactions among significantly expressed genes. The authors also introduce interpolation scheme and re-sampling method for equalizing the non-uniformity of sampling time points. Statistical significance plays an active role in obtaining the optimal interaction matrix of GRNs. The constructed genetic network using linear multiple regression matches with the original data very well. Simulation results are given to demonstrate the effectiveness of the proposed method and model.