锂电池的荷电状态(state of charge,SOC)估计是电池管理系统的重要组成部分,针对锂电池非线性的特性,提出了采用离散滑模观测器估计锂电池荷电状态的方法,给出了离散滑模观测器的设计方法及其稳定性证明。基于锂电池的戴维南等效电路模...锂电池的荷电状态(state of charge,SOC)估计是电池管理系统的重要组成部分,针对锂电池非线性的特性,提出了采用离散滑模观测器估计锂电池荷电状态的方法,给出了离散滑模观测器的设计方法及其稳定性证明。基于锂电池的戴维南等效电路模型,给出了该方法的设计过程,在不同的充放电电流倍率和环境温度下,进行了锂电池模型的参数辨识,通过与常用的扩展卡尔曼滤波法相比较,分析了离散滑模观测器对锂电池SOC估计的精度、鲁棒性和算法复杂度等方面的性能。实验结果表明,采用该算法可实现锂电池SOC快速精确地估计,误差可控制在约3%,验证了该方法的可行性。展开更多
为了抑制锂电池固有的非线性特性以及复杂的车载环境所带来的外部干扰对锂电池荷电状态(state of charge,SoC)估算的影响,采用改进的Thevenin锂电池等效电路模型,利用扩展粒子群算法(extended particle swarm optimization,EPSO)离线辨...为了抑制锂电池固有的非线性特性以及复杂的车载环境所带来的外部干扰对锂电池荷电状态(state of charge,SoC)估算的影响,采用改进的Thevenin锂电池等效电路模型,利用扩展粒子群算法(extended particle swarm optimization,EPSO)离线辨识以及在线修正模型参数,并设计了一种离散PI观测器(discrete PI observer,DPIO)来获得锂电池SoC估算值,该算法具有结构简单,易于移植等优点。实际测量数据结合MATLAB/Simulink仿真实验结果显示基于扩展PSO和离散PI观测器的锂电池SoC估计值最大绝对误差小于2.5%,优于基于扩展卡尔曼滤波算法的SoC估算算法和基于人工神经网络的SoC估算算法,而且速度更快,鲁棒性更好,能够胜任实际车载锂电池估算场合的需求。展开更多
基金Supported by National Natural Science Foundation of China(11471071)Natural Science Fundation of Shanghai(14ZR1401200)+1 种基金Shanghai Pujiang Program(16PJ1408000)Natural Science Fund of Shanghai Normal University(SK201603)
文摘锂电池的荷电状态(state of charge,SOC)估计是电池管理系统的重要组成部分,针对锂电池非线性的特性,提出了采用离散滑模观测器估计锂电池荷电状态的方法,给出了离散滑模观测器的设计方法及其稳定性证明。基于锂电池的戴维南等效电路模型,给出了该方法的设计过程,在不同的充放电电流倍率和环境温度下,进行了锂电池模型的参数辨识,通过与常用的扩展卡尔曼滤波法相比较,分析了离散滑模观测器对锂电池SOC估计的精度、鲁棒性和算法复杂度等方面的性能。实验结果表明,采用该算法可实现锂电池SOC快速精确地估计,误差可控制在约3%,验证了该方法的可行性。
文摘为了抑制锂电池固有的非线性特性以及复杂的车载环境所带来的外部干扰对锂电池荷电状态(state of charge,SoC)估算的影响,采用改进的Thevenin锂电池等效电路模型,利用扩展粒子群算法(extended particle swarm optimization,EPSO)离线辨识以及在线修正模型参数,并设计了一种离散PI观测器(discrete PI observer,DPIO)来获得锂电池SoC估算值,该算法具有结构简单,易于移植等优点。实际测量数据结合MATLAB/Simulink仿真实验结果显示基于扩展PSO和离散PI观测器的锂电池SoC估计值最大绝对误差小于2.5%,优于基于扩展卡尔曼滤波算法的SoC估算算法和基于人工神经网络的SoC估算算法,而且速度更快,鲁棒性更好,能够胜任实际车载锂电池估算场合的需求。